In the implementation of CARS nanoscopy, signal strength decreases with focal volume size decreasing. A crucial problem that remains to be solved is whether the reduced signal generated in the suppressed focal volume ...In the implementation of CARS nanoscopy, signal strength decreases with focal volume size decreasing. A crucial problem that remains to be solved is whether the reduced signal generated in the suppressed focal volume can be detected. Here reported is a theoretical analysis of detection limit (DL) to time-resolved CARS (T-CARS) nanoscopy based on our proposed additional probe-beam-induced phonon depletion (APIPD) method for the low concentration samples. In order to acquire a detailed shot-noise limited signal-to-noise (SNR) and the involved parameters to evaluate DL, the T-CARS process is described with full quantum theory to estimate the extreme power density levels of the pump and Stokes beams determined by saturation behavior of coherent phonons, which are both actually on the order of ~ 109 W/cm2. When the pump and Stokes intensities reach such values and the total intensity of the excitation beams arrives at a maximum tolerable by most biological samples in a certain suppressed focal volume (40-nm suppressed focal scale in APIPD method), the DL correspondingly varies with exposure time, for example, DL values are 103 and 102 when exposure times are 20 ms and 200 ms respectively.展开更多
The central part of the nuclear potential energy is shown to depend on the interacting masses of the nuclear matter. This mass dependent potential energy reduces to the usual Newtonian potential energy of the interact...The central part of the nuclear potential energy is shown to depend on the interacting masses of the nuclear matter. This mass dependent potential energy reduces to the usual Newtonian potential energy of the interacting masses when both the interacting masses are more than a certain limiting mass. This strong potential energy results when both the interacting masses are less than the limiting mass. The potential energy is applied to two more systems here and out of which one nucleus is in the middle of periodic table.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2012CB825802)the Major Scientific Instruments Equipment Development of China(Grant No.2012YQ15009203)+1 种基金the National Natural Science Foundation of China(Grant Nos.60878053 and 11004136)the State Key Laboratory of Precision Measurement Technology and Instruments,Tsinghua University,China(Grant No.DL12-01)
文摘In the implementation of CARS nanoscopy, signal strength decreases with focal volume size decreasing. A crucial problem that remains to be solved is whether the reduced signal generated in the suppressed focal volume can be detected. Here reported is a theoretical analysis of detection limit (DL) to time-resolved CARS (T-CARS) nanoscopy based on our proposed additional probe-beam-induced phonon depletion (APIPD) method for the low concentration samples. In order to acquire a detailed shot-noise limited signal-to-noise (SNR) and the involved parameters to evaluate DL, the T-CARS process is described with full quantum theory to estimate the extreme power density levels of the pump and Stokes beams determined by saturation behavior of coherent phonons, which are both actually on the order of ~ 109 W/cm2. When the pump and Stokes intensities reach such values and the total intensity of the excitation beams arrives at a maximum tolerable by most biological samples in a certain suppressed focal volume (40-nm suppressed focal scale in APIPD method), the DL correspondingly varies with exposure time, for example, DL values are 103 and 102 when exposure times are 20 ms and 200 ms respectively.
文摘The central part of the nuclear potential energy is shown to depend on the interacting masses of the nuclear matter. This mass dependent potential energy reduces to the usual Newtonian potential energy of the interacting masses when both the interacting masses are more than a certain limiting mass. This strong potential energy results when both the interacting masses are less than the limiting mass. The potential energy is applied to two more systems here and out of which one nucleus is in the middle of periodic table.