Investigating the reaction mechanism between slag and 9CrMoCoB steel is important to develop the proper slag and produce qualified ingots in the electroslag remelting(ESR) process. Equilibrium reaction experiments bet...Investigating the reaction mechanism between slag and 9CrMoCoB steel is important to develop the proper slag and produce qualified ingots in the electroslag remelting(ESR) process. Equilibrium reaction experiments between molten 9CrMoCoB steel and the slags of 55 wt%CaF2–20 wt%CaO–3 wt%MgO–22 wt%Al2O3–xwt%B2O3(x = 0.0, 0.5, 1.0, 1.5, 2.0, 3.0) were conducted. The reaction mechanisms between molten 9 CrMoCoB steel and the slags with different B2O3 contents were deduced based on the composition of the steel and slag samples at different reaction times. Results show that B content in the steel can be controlled within the target range when the B2O3 content is 0.5 wt% and the FeO content ranges from 0.18 wt% to 0.22 wt% in the slag. When the B2O3 content is ≥1 wt%, the reaction between Si and B2O3 leads to the increase of the B content of steel. The additions of SiO2 and B2O3 to the slag should accord to the mass ratio of [B]/[Si] in the electrode, and SiO2 addition inhibits the reaction between Si and Al2O3.展开更多
In order to research the hot deformation behavior of 9CrMoCoB heat-resistant steel,hot compression tests were performed over a wide range of temperatures from 850 to 1150℃ and strain rates from 0.01 to 10.00 s^-1.The...In order to research the hot deformation behavior of 9CrMoCoB heat-resistant steel,hot compression tests were performed over a wide range of temperatures from 850 to 1150℃ and strain rates from 0.01 to 10.00 s^-1.The flow stress appears to increase with the decrease in deformation temperature and the increase in strain rate.The relationship between microstructural evolution and deformation parameters was studied,indicating that both low strain rate and high deformation temperature appear to promote the dynamic recrystallization,while excessively high temperature with low strain rate would result in the high non-uniformity of grain size.The experimental stress-strain data was applied to calculate the material constants involved in the Arrhenius-type constitutive model and the modified Zerilli-Armstrong(MZA)model,and feasibility of these two models was evaluated.The results show that the MZA model is more accurate to predict the high-temperature flow behavior of the experimental steel than the Arrhenius-type constitutive equation.展开更多
基金This work was financially supported by the National Key R&D Program of China(No.2016YFB0300203)the National Natural Science Foundation of China(No.51974076).
文摘Investigating the reaction mechanism between slag and 9CrMoCoB steel is important to develop the proper slag and produce qualified ingots in the electroslag remelting(ESR) process. Equilibrium reaction experiments between molten 9CrMoCoB steel and the slags of 55 wt%CaF2–20 wt%CaO–3 wt%MgO–22 wt%Al2O3–xwt%B2O3(x = 0.0, 0.5, 1.0, 1.5, 2.0, 3.0) were conducted. The reaction mechanisms between molten 9 CrMoCoB steel and the slags with different B2O3 contents were deduced based on the composition of the steel and slag samples at different reaction times. Results show that B content in the steel can be controlled within the target range when the B2O3 content is 0.5 wt% and the FeO content ranges from 0.18 wt% to 0.22 wt% in the slag. When the B2O3 content is ≥1 wt%, the reaction between Si and B2O3 leads to the increase of the B content of steel. The additions of SiO2 and B2O3 to the slag should accord to the mass ratio of [B]/[Si] in the electrode, and SiO2 addition inhibits the reaction between Si and Al2O3.
基金The authors are grateful to the National Natural Science Foundation of China(Granted Nos.51474156 and U1660201)the National Magnetic Confinement Fusion Energy Research Project(Granted No.2015GB119001)for grant and financial support.
文摘In order to research the hot deformation behavior of 9CrMoCoB heat-resistant steel,hot compression tests were performed over a wide range of temperatures from 850 to 1150℃ and strain rates from 0.01 to 10.00 s^-1.The flow stress appears to increase with the decrease in deformation temperature and the increase in strain rate.The relationship between microstructural evolution and deformation parameters was studied,indicating that both low strain rate and high deformation temperature appear to promote the dynamic recrystallization,while excessively high temperature with low strain rate would result in the high non-uniformity of grain size.The experimental stress-strain data was applied to calculate the material constants involved in the Arrhenius-type constitutive model and the modified Zerilli-Armstrong(MZA)model,and feasibility of these two models was evaluated.The results show that the MZA model is more accurate to predict the high-temperature flow behavior of the experimental steel than the Arrhenius-type constitutive equation.