Wind energy density was calculated based on average wind speed and air density,and the distribution of wind energy density and its relation with the distribution of sandstorm in Hexi Corridor in Gansu Province were re...Wind energy density was calculated based on average wind speed and air density,and the distribution of wind energy density and its relation with the distribution of sandstorm in Hexi Corridor in Gansu Province were revealed. Moreover,the ecological effect of wind power development on the reduction of local sandstorm and sand flow was estimated. The results show that if the maximum rotor power coefficient of a wind-driven generator is 0. 5,the forward movement speed of sand body( or desert)( 8 827 km × 1 m × 1 m) will reduce by 1 m every year through the development and conversion of wind energy resources in Hexi Corridor. If the proportion of exploitable wind energy resources is 50%,the forward movement speed of sand body( or desert)( 4 414 km × 1 m × 1 m) will decrease by 1 m every year. It is clearly seen that wind power industry has obvious effects on the control of sandstorm and sand flow. Wind energy resources in Hexi Corridor have great development potential,and wind power industry can bring both ecological and economic benefit to people.展开更多
[Objective] The aim was to explore the spatial and temporal distribution characteristics of wind energy resource and preservation in central and west area of Hexi Corridor. [Method] By dint of the wind speed data from...[Objective] The aim was to explore the spatial and temporal distribution characteristics of wind energy resource and preservation in central and west area of Hexi Corridor. [Method] By dint of the wind speed data from 1955 to 2007 in ten meteorological observation station in central and west area of Hexi Corridor,and special wind tower fine data from January to December in 2007,the distribution and reserves of the region's wind energy resources were studied. [Result] The results showed that environmental wind speed was relatively stable in central and west Hexi Corridor. There were no distinct changes in climate characteristics distribution. There were regional differences in the distribution of wind energy,and there was a large numerical area of wind energy in Gazhou County and Yumen City; Wind energy in the region generally was higher. The wind energy density was above 100 w/m2 in the 10 m layer,around 140 w/m2 in most places,and was more than 200 w/m2 in the large number area. The wind grew in vertical direction along with the linear growth of height. Each 10 m high wind increased to 15 w/m2 averagely,50m layer wind energy was greater than the general 240 w/m2 and there were obvious changes on daily and annual with wind energy in central and west area of Hexi Corridor. The duration from March to May was a wind energy-intensive stage,10m height from the ground in the wind around 10:00 in low-value. After growing from 11:00,it met the day largest number at 18:00,and then reduced gradually. Effective wind speed hours in the region in general were more than 6 200 h,and the value in the large areas was close to 7 600 h. [Conclusion] The study laid basis for the development and application of wind energy in central and west area of Hexi Corridor.展开更多
Ventilation corridors in cities can decrease air pollution and alleviate heat island problems but there remains a need to fully assess their effectiveness.Few urban managers have been able to take city-scale approache...Ventilation corridors in cities can decrease air pollution and alleviate heat island problems but there remains a need to fully assess their effectiveness.Few urban managers have been able to take city-scale approaches to the construction of urban ventilation corridors.This study aimed to introduced the Ventilation Corridor Planning(VCP)model,which is a multi-criteria evaluation method combined with a geographical information system(GIS)to determine where the ventilated environment is most appropriate.Specifically,the VCP model took Bozhou,China as the research object and contained two scales,including mesoscale and local scale.In mesoscale scale,we got three outputs to build urban ventilation corridors,including 1)background wind environment,2)ventilation potential,3)heat island intensity.In local scale,we used traditional computational fluid dynamics(CFD)model to verify the impact of VCP criteria.The results revealed that compared with the traditional CFD model,the proposed VCP model has advantages in establishing a comprehensive evaluation standard.In addition,the application of VCP model in macro and micro also enhances the efficiency of ventilation corridor construction.Overall,this study introduced a effective modeling method to urban ventilation corridors planning,and provide a way to study the urban climate.展开更多
基金Supported by National Natural Science Foundation of China(41671528,41661064)
文摘Wind energy density was calculated based on average wind speed and air density,and the distribution of wind energy density and its relation with the distribution of sandstorm in Hexi Corridor in Gansu Province were revealed. Moreover,the ecological effect of wind power development on the reduction of local sandstorm and sand flow was estimated. The results show that if the maximum rotor power coefficient of a wind-driven generator is 0. 5,the forward movement speed of sand body( or desert)( 8 827 km × 1 m × 1 m) will reduce by 1 m every year through the development and conversion of wind energy resources in Hexi Corridor. If the proportion of exploitable wind energy resources is 50%,the forward movement speed of sand body( or desert)( 4 414 km × 1 m × 1 m) will decrease by 1 m every year. It is clearly seen that wind power industry has obvious effects on the control of sandstorm and sand flow. Wind energy resources in Hexi Corridor have great development potential,and wind power industry can bring both ecological and economic benefit to people.
基金Supported by National Natural Science Fund (41075008)Chinese Meteorological Climate Changes Program (280200S011000)Gansu Meteorological Bureau Climate Science and Research Program(2011-09)~~
文摘[Objective] The aim was to explore the spatial and temporal distribution characteristics of wind energy resource and preservation in central and west area of Hexi Corridor. [Method] By dint of the wind speed data from 1955 to 2007 in ten meteorological observation station in central and west area of Hexi Corridor,and special wind tower fine data from January to December in 2007,the distribution and reserves of the region's wind energy resources were studied. [Result] The results showed that environmental wind speed was relatively stable in central and west Hexi Corridor. There were no distinct changes in climate characteristics distribution. There were regional differences in the distribution of wind energy,and there was a large numerical area of wind energy in Gazhou County and Yumen City; Wind energy in the region generally was higher. The wind energy density was above 100 w/m2 in the 10 m layer,around 140 w/m2 in most places,and was more than 200 w/m2 in the large number area. The wind grew in vertical direction along with the linear growth of height. Each 10 m high wind increased to 15 w/m2 averagely,50m layer wind energy was greater than the general 240 w/m2 and there were obvious changes on daily and annual with wind energy in central and west area of Hexi Corridor. The duration from March to May was a wind energy-intensive stage,10m height from the ground in the wind around 10:00 in low-value. After growing from 11:00,it met the day largest number at 18:00,and then reduced gradually. Effective wind speed hours in the region in general were more than 6 200 h,and the value in the large areas was close to 7 600 h. [Conclusion] The study laid basis for the development and application of wind energy in central and west area of Hexi Corridor.
基金We acknowledge the financial support from the Natural Science Project of Anhui Provincial Department of Education[KJ2018ZD047,KJ2018A0504]Anhui Provincial Natural Science Foundation[1908085ME140].
文摘Ventilation corridors in cities can decrease air pollution and alleviate heat island problems but there remains a need to fully assess their effectiveness.Few urban managers have been able to take city-scale approaches to the construction of urban ventilation corridors.This study aimed to introduced the Ventilation Corridor Planning(VCP)model,which is a multi-criteria evaluation method combined with a geographical information system(GIS)to determine where the ventilated environment is most appropriate.Specifically,the VCP model took Bozhou,China as the research object and contained two scales,including mesoscale and local scale.In mesoscale scale,we got three outputs to build urban ventilation corridors,including 1)background wind environment,2)ventilation potential,3)heat island intensity.In local scale,we used traditional computational fluid dynamics(CFD)model to verify the impact of VCP criteria.The results revealed that compared with the traditional CFD model,the proposed VCP model has advantages in establishing a comprehensive evaluation standard.In addition,the application of VCP model in macro and micro also enhances the efficiency of ventilation corridor construction.Overall,this study introduced a effective modeling method to urban ventilation corridors planning,and provide a way to study the urban climate.