Within the seven years’ period from 1987 to 1994. the total installed capacity of China’s electric power industry doubled from 100 GW to 200 GW. This high rate of growth has imposed new and more stringent requiremen...Within the seven years’ period from 1987 to 1994. the total installed capacity of China’s electric power industry doubled from 100 GW to 200 GW. This high rate of growth has imposed new and more stringent requirements on all the branches in the展开更多
To advance the field of science and technology,we need to revitalize the development of science and technology through innovation.The development of science and technology has many beneficial implications on the revit...To advance the field of science and technology,we need to revitalize the development of science and technology through innovation.The development of science and technology has many beneficial implications on the revitalization of the country.For this reason,universities in China should give full attention to their role as the main propeller of science and technology.“Streamlining administration,delegating powers,improving regulation,and strengthening services”is a policy issued by the Chinese government for the management of science and technology funds in colleges and universities.Based on the policy of“streamlining administration,delegating powers,improving regulation,and strengthening services,”colleges and universities must optimize the management of science and technology funds for their efficient use.In this paper,we analyzed the importance of the policy and put forward an effective management strategy,aiming to improve the management of science and technology funds in colleges and universities.展开更多
This paper brings together the debate on economic impacts of renewable energy (RE) deployment and the discussion on modelling endogenous technological change on the global markets for the different renewable power gen...This paper brings together the debate on economic impacts of renewable energy (RE) deployment and the discussion on modelling endogenous technological change on the global markets for the different renewable power generation technologies. Economic impacts of RE deployment are still mostly discussed on national level, where different effects have been identified. Recent research for Germany shows positive effects on the macro level and different distributional impacts. High investment in solar photovoltaics (PV) from 2010 to 2012 and induced increases in the RE sur-charge are the main drivers. At the same time, cost reductions for wind and solar PV take place on global markets, with global learning curves explaining the cost reductions very well. This calls for better including the international dimension into the modelling. The complex feedback loops between global cost curves and national policies, which react to global learning with some time lags, are not yet integrated into complex economic models. These models have to capture different RE technologies, different industries, either delivering the RE technologies or strongly depending on electricity prices, which are influenced by national support policies and macroeconomic development. As a first step to better understand the role of international markets, assumptions on RE exports based on global scenarios can be used. Results show the importance of global markets at least for the German RE industries. If the international dimension is taken into account, mainly positive economic impacts of further RE deployment can be observed.展开更多
The 2022·China-Europe Seminar on Human Rights,successfully held in Wuhan and Vienna on May 10,2022,was sponsored by the China Society for Human Rights Studies and Austria-China Friendship Association and organize...The 2022·China-Europe Seminar on Human Rights,successfully held in Wuhan and Vienna on May 10,2022,was sponsored by the China Society for Human Rights Studies and Austria-China Friendship Association and organized by the Institute for Human Rights Law of Huazhong University of Science and Technology,the National Human Rights Education and Training Base,and Austria-China Law Association.Scholars at home and abroad conducted extensive exchanges on the conceptual guidance and practical experience of actively promoting the balanced development of scientific and technological innovation and human rights protection,and discussed the problems and countermeasures in the practice of human rights protection in in relation to the advances in science and technology.The meeting reached a consensus on respecting and protecting human rights in the era of science and technology having become a new trend and new feature in the development of human rights amidst the collision of different viewpoints and the exchange of multi-party dialogues.It also further advocated that all countries actively carry out international cooperation in the field of science and technology,so that science and technology can make greater contributions to promoting the development of human rights in the world and building a community with a shared future for human beings.展开更多
Energy is the basis of human development and the impetus of society progress. There are three sources of energy: energy of celestial body outside the Earth, the Earth energy and energy of interaction between the Earth...Energy is the basis of human development and the impetus of society progress. There are three sources of energy: energy of celestial body outside the Earth, the Earth energy and energy of interaction between the Earth and other celestial bodies. Meanwhile, there are three scales of co-evolution: the evolution of the Sun-Earth-Moon system on an ultra-long time scale has provided energy sources and extra-terrestrial environmental conditions for the formation of the Earth system;the evolution of the Earth system on a long time scale has provided the material preconditions such as energy resources and suitable sphere environment for life birth and the human development;on a short time scale, the development of human civilization makes the human circle break through the Earth system, expanding the extraterrestrial civilization. With the co-evolution, there are three processes in the carbon cycle: inorganic carbon cycle, short-term organic carbon cycle and long-term organic carbon cycle, which records human immoderate utilization of fossil energy and global sphere reforming activities, breaking the natural balance and closed-loop path of the carbon cycle of the Earth, causing the increase of greenhouse gases and global climate change, affecting human happiness and development. The energy transition is inevitable, and carbon neutrality must be realized. Building the green energy community is a fundamental measure to create the new energy system under carbon neutrality target. China is speeding up its energy revolution and developing a powerful energy nation. It is necessary to secure the cornerstone of the supply of fossil energy and forge a strong growing pole for green and sustainable development of new energy. China energy production and consumption structure will make a revolutionary transformation from the type of fossil energy domination to the type of new energy domination, depending on a high-level self-reliance of science and technology and a high-quality green energy system of cleaning, low-carbon, safety, efficiency and independence. Energy development has three major trends: low-carbon fossil energy, large-scale new energy and intelligent energy system, relying on the green innovation, contributing the green energy and constructing the green homeland.展开更多
For building Global Energy Interconnection(GEI), it is necessary to implement new breakthroughs on largepower system simulation. Key routes for implementing full electromagnetic transient simulation of large-power sys...For building Global Energy Interconnection(GEI), it is necessary to implement new breakthroughs on largepower system simulation. Key routes for implementing full electromagnetic transient simulation of large-power systems are described in this paper, and a top framework is designed. A combination of the new large time step algorithm and the traditional small-time step algorithm is proposed where both parts A and B are calculated independently. The method for integrating the Norton equivalence of the power electronic system to the entire power grid is proposed. A two-level gird division structure is proposed, which executes a multi-rate parallel calculation among subsystems and element parallel calculation in each subsystem. The initialization method of combining load flow derivation and automatic trial-and-error launching is introduced. The feasibility of the method is demonstrated through a practical power grid example, which lays a foundation for further research.展开更多
At the first gathering of its kind on the role of science in implementing the Sendai Framework for Disaster Risk Reduction 2015–2030,over 750 scientists,policymakers,business people,and practitioners met in Geneva fr...At the first gathering of its kind on the role of science in implementing the Sendai Framework for Disaster Risk Reduction 2015–2030,over 750 scientists,policymakers,business people,and practitioners met in Geneva from January 27–29,2016.The UNISDR Science and Technology Conference on the Implementation of the Sendai Framework for Disaster Risk Reduction 2015–2030 fea-展开更多
With the rapid development of deep space exploration and commercial flight, a series of tough scientific and technological challenges were raised, which urgently require ever advanced technologies to tackle with. Rece...With the rapid development of deep space exploration and commercial flight, a series of tough scientific and technological challenges were raised, which urgently require ever advanced technologies to tackle with. Recently, liquid metals, as a kind of newly emerging functional material, are attracting various attention and many breakthroughs have been made on earth. Such a scientific trend also suggests promising approaches for solving those extreme challenges in space environment. To fulfill the increasing needs thus involved, this article is dedicated to systematically introducing liquid metal material and its related disciplines into space science and technology. Firstly, existing application of liquid metal cooling for space nuclear power was summarized. Then, some potential space practices were tentatively put forward, such as liquid metal thermal interface medium,liquid metal phase change material, liquid metal convection cooling, metal alloy thermal storage, liquid metal electromagnetic shielding and liquid metal electronic printing. Fundamental as well as practical issues that would differ with earth were interpreted. Finally, potential liquid metal space experiments were proposed to investigate the liquid metal hydrodynamic characteristic, wettability and phase change mechanism in space physical environment. Overall, liquid metal enabled space science and technology investigation will not only help efficiently solve the current and future space technological problems, but also aid to stimulate the advancement of liquid metal space material science.展开更多
文摘Within the seven years’ period from 1987 to 1994. the total installed capacity of China’s electric power industry doubled from 100 GW to 200 GW. This high rate of growth has imposed new and more stringent requirements on all the branches in the
文摘To advance the field of science and technology,we need to revitalize the development of science and technology through innovation.The development of science and technology has many beneficial implications on the revitalization of the country.For this reason,universities in China should give full attention to their role as the main propeller of science and technology.“Streamlining administration,delegating powers,improving regulation,and strengthening services”is a policy issued by the Chinese government for the management of science and technology funds in colleges and universities.Based on the policy of“streamlining administration,delegating powers,improving regulation,and strengthening services,”colleges and universities must optimize the management of science and technology funds for their efficient use.In this paper,we analyzed the importance of the policy and put forward an effective management strategy,aiming to improve the management of science and technology funds in colleges and universities.
文摘This paper brings together the debate on economic impacts of renewable energy (RE) deployment and the discussion on modelling endogenous technological change on the global markets for the different renewable power generation technologies. Economic impacts of RE deployment are still mostly discussed on national level, where different effects have been identified. Recent research for Germany shows positive effects on the macro level and different distributional impacts. High investment in solar photovoltaics (PV) from 2010 to 2012 and induced increases in the RE sur-charge are the main drivers. At the same time, cost reductions for wind and solar PV take place on global markets, with global learning curves explaining the cost reductions very well. This calls for better including the international dimension into the modelling. The complex feedback loops between global cost curves and national policies, which react to global learning with some time lags, are not yet integrated into complex economic models. These models have to capture different RE technologies, different industries, either delivering the RE technologies or strongly depending on electricity prices, which are influenced by national support policies and macroeconomic development. As a first step to better understand the role of international markets, assumptions on RE exports based on global scenarios can be used. Results show the importance of global markets at least for the German RE industries. If the international dimension is taken into account, mainly positive economic impacts of further RE deployment can be observed.
文摘The 2022·China-Europe Seminar on Human Rights,successfully held in Wuhan and Vienna on May 10,2022,was sponsored by the China Society for Human Rights Studies and Austria-China Friendship Association and organized by the Institute for Human Rights Law of Huazhong University of Science and Technology,the National Human Rights Education and Training Base,and Austria-China Law Association.Scholars at home and abroad conducted extensive exchanges on the conceptual guidance and practical experience of actively promoting the balanced development of scientific and technological innovation and human rights protection,and discussed the problems and countermeasures in the practice of human rights protection in in relation to the advances in science and technology.The meeting reached a consensus on respecting and protecting human rights in the era of science and technology having become a new trend and new feature in the development of human rights amidst the collision of different viewpoints and the exchange of multi-party dialogues.It also further advocated that all countries actively carry out international cooperation in the field of science and technology,so that science and technology can make greater contributions to promoting the development of human rights in the world and building a community with a shared future for human beings.
文摘Energy is the basis of human development and the impetus of society progress. There are three sources of energy: energy of celestial body outside the Earth, the Earth energy and energy of interaction between the Earth and other celestial bodies. Meanwhile, there are three scales of co-evolution: the evolution of the Sun-Earth-Moon system on an ultra-long time scale has provided energy sources and extra-terrestrial environmental conditions for the formation of the Earth system;the evolution of the Earth system on a long time scale has provided the material preconditions such as energy resources and suitable sphere environment for life birth and the human development;on a short time scale, the development of human civilization makes the human circle break through the Earth system, expanding the extraterrestrial civilization. With the co-evolution, there are three processes in the carbon cycle: inorganic carbon cycle, short-term organic carbon cycle and long-term organic carbon cycle, which records human immoderate utilization of fossil energy and global sphere reforming activities, breaking the natural balance and closed-loop path of the carbon cycle of the Earth, causing the increase of greenhouse gases and global climate change, affecting human happiness and development. The energy transition is inevitable, and carbon neutrality must be realized. Building the green energy community is a fundamental measure to create the new energy system under carbon neutrality target. China is speeding up its energy revolution and developing a powerful energy nation. It is necessary to secure the cornerstone of the supply of fossil energy and forge a strong growing pole for green and sustainable development of new energy. China energy production and consumption structure will make a revolutionary transformation from the type of fossil energy domination to the type of new energy domination, depending on a high-level self-reliance of science and technology and a high-quality green energy system of cleaning, low-carbon, safety, efficiency and independence. Energy development has three major trends: low-carbon fossil energy, large-scale new energy and intelligent energy system, relying on the green innovation, contributing the green energy and constructing the green homeland.
基金supported by key project of smart grid technology and equipment of national key research and development plan of China (2016YFB0900601)
文摘For building Global Energy Interconnection(GEI), it is necessary to implement new breakthroughs on largepower system simulation. Key routes for implementing full electromagnetic transient simulation of large-power systems are described in this paper, and a top framework is designed. A combination of the new large time step algorithm and the traditional small-time step algorithm is proposed where both parts A and B are calculated independently. The method for integrating the Norton equivalence of the power electronic system to the entire power grid is proposed. A two-level gird division structure is proposed, which executes a multi-rate parallel calculation among subsystems and element parallel calculation in each subsystem. The initialization method of combining load flow derivation and automatic trial-and-error launching is introduced. The feasibility of the method is demonstrated through a practical power grid example, which lays a foundation for further research.
文摘At the first gathering of its kind on the role of science in implementing the Sendai Framework for Disaster Risk Reduction 2015–2030,over 750 scientists,policymakers,business people,and practitioners met in Geneva from January 27–29,2016.The UNISDR Science and Technology Conference on the Implementation of the Sendai Framework for Disaster Risk Reduction 2015–2030 fea-
基金supported by the Key Project of the National Natural Science Foundation of China (Grant No. 91748206)the Frontier Project of the Chinese Academy of Sciences and Dean’s Research Funding。
文摘With the rapid development of deep space exploration and commercial flight, a series of tough scientific and technological challenges were raised, which urgently require ever advanced technologies to tackle with. Recently, liquid metals, as a kind of newly emerging functional material, are attracting various attention and many breakthroughs have been made on earth. Such a scientific trend also suggests promising approaches for solving those extreme challenges in space environment. To fulfill the increasing needs thus involved, this article is dedicated to systematically introducing liquid metal material and its related disciplines into space science and technology. Firstly, existing application of liquid metal cooling for space nuclear power was summarized. Then, some potential space practices were tentatively put forward, such as liquid metal thermal interface medium,liquid metal phase change material, liquid metal convection cooling, metal alloy thermal storage, liquid metal electromagnetic shielding and liquid metal electronic printing. Fundamental as well as practical issues that would differ with earth were interpreted. Finally, potential liquid metal space experiments were proposed to investigate the liquid metal hydrodynamic characteristic, wettability and phase change mechanism in space physical environment. Overall, liquid metal enabled space science and technology investigation will not only help efficiently solve the current and future space technological problems, but also aid to stimulate the advancement of liquid metal space material science.