A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th...A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.展开更多
A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input vari...A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.展开更多
A robust optimal output tracking control method for a midwater trawl system is investigated based on T-S fuzzy nonlinear model. A simplified nonlinear mathematical model is first employed to represent a midwater trawl...A robust optimal output tracking control method for a midwater trawl system is investigated based on T-S fuzzy nonlinear model. A simplified nonlinear mathematical model is first employed to represent a midwater trawl system, and then a T-S fuzzy model is adopted to approximate the nonlinear system. Since the strong nonlinearities and the external disturbance of the trawling system, a mixed H2/H∞ fuzzy output tracking control strategy via T-S fuzzy system is proposed to regulate the trawl depth to follow a desired trajectory. The trawl depth can be regulated by adjusting the winch velocity automatically and the tracking error can be minimized according to the robust optimal criterion. In order to validate the proposed control method, a computer simulation is conducted. The simulation results indicate that the proposed fuzzy robust optimal controller make the trawl net rapidly follow the desired trajectory under the model uncertainties and the extemal disturbance caused by wave and current.展开更多
A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertai...A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme.展开更多
A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly forme...A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly formed to represent the nonlinear system of PMSM. For converting the tracking control into a stabilization problem, a new control design was proposed to define the internal desired states. Then, the FSMC controller for PMSM system with parameter variation and load disturbance was designed based on the fuzzy model. The performance of the proposed controller was verified by experimental results on PMSM system. The results show that the FSMC scheme can drive the dynamics of PMSM into a designated sliding surface in finite time and guarantee the property of asymptotical stability. The information of upper bound of modeling errors as well as perturbations is not required when using the FSMC controller.展开更多
Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked cont...Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.展开更多
This paper is concerned with a fuzzy robust H∞ control problem via output feedbackfor a class of uncertain nonlinear systems. The uncertain nonlinear systemsare represented by fuzzy Takagi-Sugeno (T-S) model, and a...This paper is concerned with a fuzzy robust H∞ control problem via output feedbackfor a class of uncertain nonlinear systems. The uncertain nonlinear systemsare represented by fuzzy Takagi-Sugeno (T-S) model, and a fuzzy controller is designedbased on the state observer. A sufficient condition for the existence of fuzzycontroller is given in terms of the linear matrix inequalities (LMIs) and the adaptivelaw. Based on Lyapunov stability theorem, the proposed fuzzy control scheme suchthat the desired H∞performance is achieved in the sense that all the closed-loopsignals are uniformly ultimately bounded (UUB). Simulation results indicate theeffectiveness of the developed control scheme. In this paper, a less conservativefuzzy tracking controller is proposed, where the matching condition and the upperbound are avoided. Comparing with the existing works, the dimension of the LMIsof this paper is reduced.展开更多
This paper introduces a Takagi-Sugeno(T-S)fuzzy regulator design using the negative absolute eigenvalue(NAE)approach for a class of nonlinear and unstable systems.The open-loop system is initially embodied by the trad...This paper introduces a Takagi-Sugeno(T-S)fuzzy regulator design using the negative absolute eigenvalue(NAE)approach for a class of nonlinear and unstable systems.The open-loop system is initially embodied by the traditional T-S fuzzy model and then,all closed-loop subsystems are combined using the proposed Max-Min operator in place of traditional weighted average operator from the controller side to lessen the coupling virtually and simplify the proposed regulator design.For each virtually decoupled closed-loop subsystem,the composite regulators(i.e.,primary and secondary regulators)are designed by the NAE approach based on the enhanced eigenvalue analysis.The Lyapunov function is utilized to guarantee the asymptotic stability of the overall T-S fuzzy control system.The most popular and widely used nonlinear and unstable systems like the electromagnetic levitation system(EMLS)and the inverted cart pendulum(ICP)are simulated for the wide range of the initial conditions and the enormous variation in the disturbance.The transient and steady-state performance of the considered systems using the proposed design are analyzed in terms of the decay rate,settling time and integral errors as IAE,ISE,ITAE,and ITSE to validate the effectiveness of the proposed approach compared to the most popular and traditional parallel distributed compensation(PDC)approach.展开更多
This article investigates the issue of event-triggered fault detection(FD)filter design for T-S fuzzy systems with local nonlinear models.A novel H−/H∞FD filter subject to the event triggering transmission mechanism ...This article investigates the issue of event-triggered fault detection(FD)filter design for T-S fuzzy systems with local nonlinear models.A novel H−/H∞FD filter subject to the event triggering transmission mechanism is designed in finite-frequency domain.Then,a novel lemma,in which the nonlinear part and the event triggering mechanism are dealt appropriately,is presented to capture the sensitivity and robustness performances.In addition,the slack matrices are utilised to derive optimal filter parameters by solving a convex optimisation problem.The less conservative FD method can get better detection performances than those entire-frequency methods.Finally,an example is introduced to verify the new results.展开更多
In this paper, the output consensus problem of general heterogeneous nonlinear multi-agent systems subject to different disturbances is considered. A kind of Takagi-Sukeno fuzzy modeling method is used to describe the...In this paper, the output consensus problem of general heterogeneous nonlinear multi-agent systems subject to different disturbances is considered. A kind of Takagi-Sukeno fuzzy modeling method is used to describe the nonlinear agents' dynamics. Based on the model, a distributed fuzzy observer and controller are designed based on parallel distributed compensation scheme and internal reference models such that the heterogeneous nonlinear multi-agent systems can achieve output consensus. Then a necessary and sufficient condition is presented for the output consensus problem. And it is shown that the consensus trajectory of the global fuzzy model is determined by the network topology and the initial states of the internal reference models. Finally, some simulations are given to illustrate and verify the effectiveness of the proposed scheme.展开更多
This paper addresses a robust H∞filter design problem for nonlinear systems with time-varying delay through TakagiSugeno(T-S) fuzzy model approach. Firstly, by introducing free-weighting matrix method combined with a...This paper addresses a robust H∞filter design problem for nonlinear systems with time-varying delay through TakagiSugeno(T-S) fuzzy model approach. Firstly, by introducing free-weighting matrix method combined with a matrix decoupling approach and adopting an improved integral inequality method without ignoring any integral term, less conservative results are achieved. Next,based on the model, new delay-dependent sufficient conditions are derived, which are less conservative than the existing ones via solving the linear matrix inequalities(LMIs). Lastly, simulations show a significant improvement over the previous results.展开更多
Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robu...Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robust non-fragile fuzzy control for a class of uncertain discrete nonlinear large-scale systems with time-delay and controller gain perturbations described by T-S fuzzy model. An equivalent T-S fuzzy model is represented for discrete-delay nonlinear large-scale systems. A sufficient condition for the existence of such non-fragile controllers is further derived via the Lyapunov function and the linear matrix inequality( LMI) approach. Simulation results demonstrate the feasibility and the effectiveness of the proposed design and the proper stabilization of the system in spite of controller gain variations and uncertainties.展开更多
A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constrain...A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constraints are shown to be a set of linear matrix inequalities (LMIs), which can be easily solved by the MATLAB LMI Control Toolbox to determine the control law. Most recurrent neural networks (including the chaotic neural network) and nonlinear systems modeled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be stabilization controllers synthesized in the framework of a unified SNNM. Finally, three numerical examples are provided to illustrate the design developed in this paper.展开更多
A new modeling approach for nonlinear systems with rate-dependent hysteresis is proposed. The approach is used for the modeling of the giant magnetostrictive actuator, which has the rate-dependent nonlinear property. ...A new modeling approach for nonlinear systems with rate-dependent hysteresis is proposed. The approach is used for the modeling of the giant magnetostrictive actuator, which has the rate-dependent nonlinear property. The models built are simpler than the existed approaches. Compared with the experiment result, the model built can well describe the hysteresis nonlinear of the actuator for input signals with complex frequency. An adaptive direct inverse control approach is proposed based on the fuzzy tree model and inverse learning and special learning that are used in neural network broadly. In this approach, the inverse model of the plant is identified to be the initial controller firstly. Then, the inverse model is connected with the plant in series and the linear parameters of the controller are adjusted using the least mean square algorithm by on-line manner. The direct inverse control approach based on the fuzzy tree model is applied on the tracing control of the actuator by simulation. The simulation results show the correctness of the approach.展开更多
Purpose–The purpose of this paper is to deal with the stabilization of the continuous-time TakagiSugeno(TS)fuzzy models by using their discretized models.Design/methodology/approach–In this case,a discrete model is...Purpose–The purpose of this paper is to deal with the stabilization of the continuous-time TakagiSugeno(TS)fuzzy models by using their discretized models.Design/methodology/approach–In this case,a discrete model is obtained from the discretization of the continuous TS fuzzy model.The gains obtained from a non-parallel distributed compensation controller ensuring the stabilization of the discrete model are used to check if the discrete control law used in the continuous time without any zero-order hold can stabilize the continuous TS model.Findings–This method is compared to another published method.Originality/value–Therefore,the originality of this paper consists in the fusion of the two continuous and discrete cases to obtain new stabilization conditions in the continuous case.Simulation examples show the interest of the proposed approach.展开更多
The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the different...The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the differential mean value theorem (DMVT) and convex theory. The proposed design approach is based on the mean value theorem (MVT) to express the nonlinear error dynamics as a convex combination of known matrices with time varying coefficients as linear parameter varying (LPV) systems. Using the Lyapunov theory, stability conditions are obtained and expressed in terms of linear matrix inequalities (LMIs). The controller gains are then obtained by solving linear matrix inequalities. The effectiveness of the proposed approach for closed loop-field oriented control (CL-FOC) of permanent magnet synchronous machine (PMSM) drives is demonstrated through an illustrative simulation for the proof of these approaches. Furthermore, an extension for controller design with parameter uncertainties and perturbation performance is discussed.展开更多
基金This Project was supported by the National Natural Science Foundation of China (60374037 and 60574036)the Opening Project Foundation of National Lab of Industrial Control Technology (0708008).
文摘A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.
基金supported by the National Natural Science Foundation of China (No.70471087)China Postdoctoral Science Foundation Funded Project(No.20080430929)Liaoning Province Education Bureau Foundation (No.20060106)
文摘A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.
基金supported by the National High-Technology Research and Development Program of China (863 Program,Grant No. 2008AA042703)
文摘A robust optimal output tracking control method for a midwater trawl system is investigated based on T-S fuzzy nonlinear model. A simplified nonlinear mathematical model is first employed to represent a midwater trawl system, and then a T-S fuzzy model is adopted to approximate the nonlinear system. Since the strong nonlinearities and the external disturbance of the trawling system, a mixed H2/H∞ fuzzy output tracking control strategy via T-S fuzzy system is proposed to regulate the trawl depth to follow a desired trajectory. The trawl depth can be regulated by adjusting the winch velocity automatically and the tracking error can be minimized according to the robust optimal criterion. In order to validate the proposed control method, a computer simulation is conducted. The simulation results indicate that the proposed fuzzy robust optimal controller make the trawl net rapidly follow the desired trajectory under the model uncertainties and the extemal disturbance caused by wave and current.
基金the National Natural Science Foundation of China (90716028 and 90405011).
文摘A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme.
基金Project (60835004) supported by the National Natural Science Foundation of China
文摘A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly formed to represent the nonlinear system of PMSM. For converting the tracking control into a stabilization problem, a new control design was proposed to define the internal desired states. Then, the FSMC controller for PMSM system with parameter variation and load disturbance was designed based on the fuzzy model. The performance of the proposed controller was verified by experimental results on PMSM system. The results show that the FSMC scheme can drive the dynamics of PMSM into a designated sliding surface in finite time and guarantee the property of asymptotical stability. The information of upper bound of modeling errors as well as perturbations is not required when using the FSMC controller.
文摘Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.
文摘This paper is concerned with a fuzzy robust H∞ control problem via output feedbackfor a class of uncertain nonlinear systems. The uncertain nonlinear systemsare represented by fuzzy Takagi-Sugeno (T-S) model, and a fuzzy controller is designedbased on the state observer. A sufficient condition for the existence of fuzzycontroller is given in terms of the linear matrix inequalities (LMIs) and the adaptivelaw. Based on Lyapunov stability theorem, the proposed fuzzy control scheme suchthat the desired H∞performance is achieved in the sense that all the closed-loopsignals are uniformly ultimately bounded (UUB). Simulation results indicate theeffectiveness of the developed control scheme. In this paper, a less conservativefuzzy tracking controller is proposed, where the matching condition and the upperbound are avoided. Comparing with the existing works, the dimension of the LMIsof this paper is reduced.
文摘This paper introduces a Takagi-Sugeno(T-S)fuzzy regulator design using the negative absolute eigenvalue(NAE)approach for a class of nonlinear and unstable systems.The open-loop system is initially embodied by the traditional T-S fuzzy model and then,all closed-loop subsystems are combined using the proposed Max-Min operator in place of traditional weighted average operator from the controller side to lessen the coupling virtually and simplify the proposed regulator design.For each virtually decoupled closed-loop subsystem,the composite regulators(i.e.,primary and secondary regulators)are designed by the NAE approach based on the enhanced eigenvalue analysis.The Lyapunov function is utilized to guarantee the asymptotic stability of the overall T-S fuzzy control system.The most popular and widely used nonlinear and unstable systems like the electromagnetic levitation system(EMLS)and the inverted cart pendulum(ICP)are simulated for the wide range of the initial conditions and the enormous variation in the disturbance.The transient and steady-state performance of the considered systems using the proposed design are analyzed in terms of the decay rate,settling time and integral errors as IAE,ISE,ITAE,and ITSE to validate the effectiveness of the proposed approach compared to the most popular and traditional parallel distributed compensation(PDC)approach.
基金the Funds of the Natural Science Foundation of Liaoning Province of China[grant number 2019-ZD-0118].
文摘This article investigates the issue of event-triggered fault detection(FD)filter design for T-S fuzzy systems with local nonlinear models.A novel H−/H∞FD filter subject to the event triggering transmission mechanism is designed in finite-frequency domain.Then,a novel lemma,in which the nonlinear part and the event triggering mechanism are dealt appropriately,is presented to capture the sensitivity and robustness performances.In addition,the slack matrices are utilised to derive optimal filter parameters by solving a convex optimisation problem.The less conservative FD method can get better detection performances than those entire-frequency methods.Finally,an example is introduced to verify the new results.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61375105 and 61403334Chinese Postdoctoral Science Fundation under Grant No.2015M581318
文摘In this paper, the output consensus problem of general heterogeneous nonlinear multi-agent systems subject to different disturbances is considered. A kind of Takagi-Sukeno fuzzy modeling method is used to describe the nonlinear agents' dynamics. Based on the model, a distributed fuzzy observer and controller are designed based on parallel distributed compensation scheme and internal reference models such that the heterogeneous nonlinear multi-agent systems can achieve output consensus. Then a necessary and sufficient condition is presented for the output consensus problem. And it is shown that the consensus trajectory of the global fuzzy model is determined by the network topology and the initial states of the internal reference models. Finally, some simulations are given to illustrate and verify the effectiveness of the proposed scheme.
基金supported in part by Funds of National Science of China(No.61174215)
文摘This paper addresses a robust H∞filter design problem for nonlinear systems with time-varying delay through TakagiSugeno(T-S) fuzzy model approach. Firstly, by introducing free-weighting matrix method combined with a matrix decoupling approach and adopting an improved integral inequality method without ignoring any integral term, less conservative results are achieved. Next,based on the model, new delay-dependent sufficient conditions are derived, which are less conservative than the existing ones via solving the linear matrix inequalities(LMIs). Lastly, simulations show a significant improvement over the previous results.
文摘Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robust non-fragile fuzzy control for a class of uncertain discrete nonlinear large-scale systems with time-delay and controller gain perturbations described by T-S fuzzy model. An equivalent T-S fuzzy model is represented for discrete-delay nonlinear large-scale systems. A sufficient condition for the existence of such non-fragile controllers is further derived via the Lyapunov function and the linear matrix inequality( LMI) approach. Simulation results demonstrate the feasibility and the effectiveness of the proposed design and the proper stabilization of the system in spite of controller gain variations and uncertainties.
基金the National Natural Science Foundation of China (No. 60504024)the Specialized Research Fund for the Doc-toral Program of Higher Education, China (No. 20060335022)+1 种基金the Natural Science Foundation of Zhejiang Province, China (No. Y106010)the "151 Talent Project" of Zhejiang Province (Nos. 05-3-1013 and 06-2-034), China
文摘A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constraints are shown to be a set of linear matrix inequalities (LMIs), which can be easily solved by the MATLAB LMI Control Toolbox to determine the control law. Most recurrent neural networks (including the chaotic neural network) and nonlinear systems modeled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be stabilization controllers synthesized in the framework of a unified SNNM. Finally, three numerical examples are provided to illustrate the design developed in this paper.
基金Supported by the National Natural Science Foundation of China (Grant No. 60534020)the National Basic Research Program of China (GrantNo. G2002cb312205-04)+1 种基金the Research Fund for the Doctoral Program of Higher Education (Grant No. 20070006060)the Key Subject Foundation of Beijing (Grant Nos. XK100060526, XK100060422)
文摘A new modeling approach for nonlinear systems with rate-dependent hysteresis is proposed. The approach is used for the modeling of the giant magnetostrictive actuator, which has the rate-dependent nonlinear property. The models built are simpler than the existed approaches. Compared with the experiment result, the model built can well describe the hysteresis nonlinear of the actuator for input signals with complex frequency. An adaptive direct inverse control approach is proposed based on the fuzzy tree model and inverse learning and special learning that are used in neural network broadly. In this approach, the inverse model of the plant is identified to be the initial controller firstly. Then, the inverse model is connected with the plant in series and the linear parameters of the controller are adjusted using the least mean square algorithm by on-line manner. The direct inverse control approach based on the fuzzy tree model is applied on the tracing control of the actuator by simulation. The simulation results show the correctness of the approach.
文摘Purpose–The purpose of this paper is to deal with the stabilization of the continuous-time TakagiSugeno(TS)fuzzy models by using their discretized models.Design/methodology/approach–In this case,a discrete model is obtained from the discretization of the continuous TS fuzzy model.The gains obtained from a non-parallel distributed compensation controller ensuring the stabilization of the discrete model are used to check if the discrete control law used in the continuous time without any zero-order hold can stabilize the continuous TS model.Findings–This method is compared to another published method.Originality/value–Therefore,the originality of this paper consists in the fusion of the two continuous and discrete cases to obtain new stabilization conditions in the continuous case.Simulation examples show the interest of the proposed approach.
文摘The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the differential mean value theorem (DMVT) and convex theory. The proposed design approach is based on the mean value theorem (MVT) to express the nonlinear error dynamics as a convex combination of known matrices with time varying coefficients as linear parameter varying (LPV) systems. Using the Lyapunov theory, stability conditions are obtained and expressed in terms of linear matrix inequalities (LMIs). The controller gains are then obtained by solving linear matrix inequalities. The effectiveness of the proposed approach for closed loop-field oriented control (CL-FOC) of permanent magnet synchronous machine (PMSM) drives is demonstrated through an illustrative simulation for the proof of these approaches. Furthermore, an extension for controller design with parameter uncertainties and perturbation performance is discussed.