Osteogenesis imperfecta(OI) comprises a group of heritable connective tissue disorders generally defined by recurrent fractures, low bone mass, short stature and skeletal fragility. Beyond the skeletal complications...Osteogenesis imperfecta(OI) comprises a group of heritable connective tissue disorders generally defined by recurrent fractures, low bone mass, short stature and skeletal fragility. Beyond the skeletal complications of OI,many patients also report intolerance to physical activity, fatigue and muscle weakness. Indeed, recent studies have demonstrated that skeletal muscle is also negatively affected by OI, both directly and indirectly. Given the well-established interdependence of bone and skeletal muscle in both physiology and pathophysiology and the observations of skeletal muscle pathology in patients with OI, we investigated the therapeutic potential of simultaneous anabolic targeting of both bone and skeletal muscle using a soluble activin receptor 2B(ACVR2B) in a mouse model of type Ⅲ OI(oim). Treatment of 12-week-old oim mice with ACVR2 B for 4 weeks resulted in significant increases in both bone and muscle that were similar to those observed in healthy,wild-type littermates. This proof of concept study provides encouraging evidence for a holistic approach to treating the deleterious consequences of OI in the musculoskeletal system.展开更多
Alzheimer’s disease(AD),the main cause of dementia,is defined by the combined presence of amyloid-b(Ab)deposition and abnormal tau aggregation[1].Experimental models are critical to obtain a better understanding ...Alzheimer’s disease(AD),the main cause of dementia,is defined by the combined presence of amyloid-b(Ab)deposition and abnormal tau aggregation[1].Experimental models are critical to obtain a better understanding of AD pathogenesis,and to evaluate the potential of novel therapeutic approaches.The most commonly used AD展开更多
Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target.Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis,there is ...Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target.Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis,there is considerable heterogeneity,including clinical presentation,progression,and the underlying triggers for disease initiation.Based on longitudinal studies with families harboring amyotrophic lateral sclerosis-associated gene mutations,it has become apparent that overt disease is preceded by a prodromal phase,possibly in years,where compensatory mechanisms delay symptom onset.Since 85-90%of amyotrophic lateral sclerosis is sporadic,there is a strong need for identifying biomarkers that can detect this prodromal phase as motor neurons have limited capacity for regeneration.Current Food and Drug Administration-approved therapies work by slowing the degenerative process and are most effective early in the disease.Skeletal muscle,including the neuromuscular junction,manifests abnormalities at the earliest stages of the disease,before motor neuron loss,making it a promising source for identifying biomarkers of the prodromal phase.The accessibility of muscle through biopsy provides a lens into the distal motor system at earlier stages and in real time.The advent of“omics”technology has led to the identification of numerous dysregulated molecules in amyotrophic lateral sclerosis muscle,ranging from coding and non-coding RNAs to proteins and metabolites.This technology has opened the door for identifying biomarkers of disease activity and providing insight into disease mechanisms.A major challenge is correlating the myriad of dysregulated molecules with clinical or histological progression and understanding their relevance to presymptomatic phases of disease.There are two major goals of this review.The first is to summarize some of the biomarkers identified in human amyotrophic lateral sclerosis muscle that have a clinicopathological correlation with disease activity,evidence of a similar dysregulation in the SOD1G93A mouse during presymptomatic stages,and evidence of progressive change during disease progression.The second goal is to review the molecular pathways these biomarkers reflect and their potential role in mitigating or promoting disease progression,and as such,their potential as therapeutic targets in amyotrophic lateral sclerosis.展开更多
Osteoarthritis (OA) is a degenerative joint disease and a major cause of pain and disability in older adults. We have previously identified epidermal growth factor receptor (EGFR) signaling as an important regulat...Osteoarthritis (OA) is a degenerative joint disease and a major cause of pain and disability in older adults. We have previously identified epidermal growth factor receptor (EGFR) signaling as an important regulator of cartilage matrix degradation during epiphyseal cartilage development. To study its function in OA progression, we performed surgical destabilization of the medial meniscus (DMM) to induce OA in two mouse models with reduced EGFR activity, one with genetic modification (, was/+ mice) and the other one with pharmacological inhibition (gefitinib treatment). Histological analyses and scoring at 3 months post-surgery revealed increased cartilage destruction and accelerated OA progression in both mouse models. TUNEL staining demonstrated that EGFR signaling protects chondrocytes from OA-induced apoptosis, which was further confirmed in primary chondrocyte culture. Immunohistochemistry showed increased aggrecan degradation in these mouse models, which coincides with elevated amounts of ADAMTS5 and matrix metalloproteinase 13 (MMP13), the principle proteinases responsible for aggrecan degradation, in the articular cartilage after DMM surgery. Furthermore, hypoxia-inducible factor 2α (HIF2α), a critical catabolic transcription factor stimulating MMP13 expression during OA, was also upregulated in mice with reduced EGFR signaling. Taken together, our findings demonstrate a primarily protective role of EGFR during OA progression by regulating chondrocyte survival and cartilage degradation.展开更多
基金supported by NIAMS,of the National Institutes of Health,under award numbers R01AR062074 (to DJD) and R01AR060636 (to S-JL)the Harry Headley Charitable and Research Foundation,Punta Gorda,FL(to ELG-L)
文摘Osteogenesis imperfecta(OI) comprises a group of heritable connective tissue disorders generally defined by recurrent fractures, low bone mass, short stature and skeletal fragility. Beyond the skeletal complications of OI,many patients also report intolerance to physical activity, fatigue and muscle weakness. Indeed, recent studies have demonstrated that skeletal muscle is also negatively affected by OI, both directly and indirectly. Given the well-established interdependence of bone and skeletal muscle in both physiology and pathophysiology and the observations of skeletal muscle pathology in patients with OI, we investigated the therapeutic potential of simultaneous anabolic targeting of both bone and skeletal muscle using a soluble activin receptor 2B(ACVR2B) in a mouse model of type Ⅲ OI(oim). Treatment of 12-week-old oim mice with ACVR2 B for 4 weeks resulted in significant increases in both bone and muscle that were similar to those observed in healthy,wild-type littermates. This proof of concept study provides encouraging evidence for a holistic approach to treating the deleterious consequences of OI in the musculoskeletal system.
基金partly supported by grants from the National Key Research and Development Program of China(2016YFA0100900)the International S&T Cooperation Program of China(2015DFG32740)the National Natural Science Foundation of China(81571711 and 81425015)
文摘Alzheimer’s disease(AD),the main cause of dementia,is defined by the combined presence of amyloid-b(Ab)deposition and abnormal tau aggregation[1].Experimental models are critical to obtain a better understanding of AD pathogenesis,and to evaluate the potential of novel therapeutic approaches.The most commonly used AD
基金supported by NIH Grants R01NS092651 and R21NS111275-01the Department of Veterans Affairs,BX001148 and BX005899(to PHK)。
文摘Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target.Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis,there is considerable heterogeneity,including clinical presentation,progression,and the underlying triggers for disease initiation.Based on longitudinal studies with families harboring amyotrophic lateral sclerosis-associated gene mutations,it has become apparent that overt disease is preceded by a prodromal phase,possibly in years,where compensatory mechanisms delay symptom onset.Since 85-90%of amyotrophic lateral sclerosis is sporadic,there is a strong need for identifying biomarkers that can detect this prodromal phase as motor neurons have limited capacity for regeneration.Current Food and Drug Administration-approved therapies work by slowing the degenerative process and are most effective early in the disease.Skeletal muscle,including the neuromuscular junction,manifests abnormalities at the earliest stages of the disease,before motor neuron loss,making it a promising source for identifying biomarkers of the prodromal phase.The accessibility of muscle through biopsy provides a lens into the distal motor system at earlier stages and in real time.The advent of“omics”technology has led to the identification of numerous dysregulated molecules in amyotrophic lateral sclerosis muscle,ranging from coding and non-coding RNAs to proteins and metabolites.This technology has opened the door for identifying biomarkers of disease activity and providing insight into disease mechanisms.A major challenge is correlating the myriad of dysregulated molecules with clinical or histological progression and understanding their relevance to presymptomatic phases of disease.There are two major goals of this review.The first is to summarize some of the biomarkers identified in human amyotrophic lateral sclerosis muscle that have a clinicopathological correlation with disease activity,evidence of a similar dysregulation in the SOD1G93A mouse during presymptomatic stages,and evidence of progressive change during disease progression.The second goal is to review the molecular pathways these biomarkers reflect and their potential role in mitigating or promoting disease progression,and as such,their potential as therapeutic targets in amyotrophic lateral sclerosis.
基金supported by ASBMR Research Career Enhancement Award (to LQ)NIH grants AR060991 (to LQ)AR062908 (to ME-I)
文摘Osteoarthritis (OA) is a degenerative joint disease and a major cause of pain and disability in older adults. We have previously identified epidermal growth factor receptor (EGFR) signaling as an important regulator of cartilage matrix degradation during epiphyseal cartilage development. To study its function in OA progression, we performed surgical destabilization of the medial meniscus (DMM) to induce OA in two mouse models with reduced EGFR activity, one with genetic modification (, was/+ mice) and the other one with pharmacological inhibition (gefitinib treatment). Histological analyses and scoring at 3 months post-surgery revealed increased cartilage destruction and accelerated OA progression in both mouse models. TUNEL staining demonstrated that EGFR signaling protects chondrocytes from OA-induced apoptosis, which was further confirmed in primary chondrocyte culture. Immunohistochemistry showed increased aggrecan degradation in these mouse models, which coincides with elevated amounts of ADAMTS5 and matrix metalloproteinase 13 (MMP13), the principle proteinases responsible for aggrecan degradation, in the articular cartilage after DMM surgery. Furthermore, hypoxia-inducible factor 2α (HIF2α), a critical catabolic transcription factor stimulating MMP13 expression during OA, was also upregulated in mice with reduced EGFR signaling. Taken together, our findings demonstrate a primarily protective role of EGFR during OA progression by regulating chondrocyte survival and cartilage degradation.