An autonomous altitude adjustment system for a stratospheric satellite(StratoSat)platform is proposed.This platform consists of a helium balloon,a ballonet,and a two-way blower.The helium balloon generates lift to bal...An autonomous altitude adjustment system for a stratospheric satellite(StratoSat)platform is proposed.This platform consists of a helium balloon,a ballonet,and a two-way blower.The helium balloon generates lift to balance the platform gravity.The two-way blower inflates and deflates the ballonet to regulate the buoyancy.Altitude adjustment is achieved by tracking the differential pressure difference(DPD),and a threshold switching strategy is used to achieve blower flow control.The vertical acceleration regulation ability is decided not only by the blower flow rate,but also by the designed margin of pressure difference(MPD).Pressure difference is a slow-varying variable compared with altitude,and it is adopted as the control variable.The response speed of the actuator to disturbance can be delayed,and the overshoot caused by the large inertia of the platform is inhibited.This method can maintain a high tracking accuracy and reduce the complexity of model calculation,thus improving the robustness of controller design.展开更多
During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity...During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity cross-section enlarges.This rapid increasement of liquid metal inlet velocity causes serious entrapment of gas and oxide films,and results in various casting defects such as the bifilm defects.These defects detrimentally deteriorate mechanical properties of the castings.To address this issue,an innovative nonlinear pressurization strategy timely matching to the casting structure was proposed.The pressurization rate decreases at sections where the cross-section widens,but it gradually increases as the liquid metal level rises.By this way,the inlet velocity remains below a critical threshold to prevent the entrapment of gas and oxide films.Comparative analyses involving numerical simulations and casting verification illustrate that the nonlinear pressurization technique,compared to the linear pressurization,effectively diminishes both the size and number of bifilm defects.Furthermore,the nonlinear pressurization method enhances the casting yield strength by 10%,tensile strength by 14%,and elongation by 10%.Examination through scanning electron microscopy highlights that the bifilm defects arising from the linear pressurization process result in the reduction of the castings’mechanical properties.These observations underscore the efficacy of nonlinear pressurization in enhancing the quality and reliability of gigantic castings,as exemplified by a 5.4-ton extra-large sized C95800 copper alloy propeller hub with complex structures in the current study.展开更多
Structural design and tests on the characteristics of the SF6 gas switch with a small gap are presented. This kind of switch often works under high pressure and nanosecond pulse for getting pulse with faster risetime....Structural design and tests on the characteristics of the SF6 gas switch with a small gap are presented. This kind of switch often works under high pressure and nanosecond pulse for getting pulse with faster risetime. The breakdown voltage and breakdown delay of a number of switches with different geometries, gas pressures and pulse waveforms were investigated. Experimental results suggested that the breakdown voltage increases linearly with the gas pressure, and the breakdown delay decreases with an increase in the gas pressure and a reduction in the gap distance of the switch under the same applied pulse. By using this kind of switch with a gap of 3 mm as a peaking switch, a pulse generator can provide an output voltage with a peak voltage of 300 kV and a risetime of 3 ns on a resistance load of 150Ω.展开更多
Aiming at the problem of large energy consumption in hydraulic control system with large load and variable working conditions,based on the multi-level pressure switching control system(MPSCS),a multi-level pressure sw...Aiming at the problem of large energy consumption in hydraulic control system with large load and variable working conditions,based on the multi-level pressure switching control system(MPSCS),a multi-level pressure switching control system based on independent metering control is proposed combined with the independent metering control technology.The configuration principle of the system is given,the mathematical model of this system is established,and the control strategy of the system under 4 different working quadrants is put forward.Finally,the control performance and energy saving characteristics of the system are tested.The test results show that the switching of high and low pressure power supply has a certain effect on the response of step position and ramp position under impedance working condition.The displacement curves show slow climbing or abrupt change of ramp position,and the position accuracy is less than 1 mm.The multi-level pressure switching control system based on independent metering control can recover and store energy under the transcendence working conditions.The control accuracy is about 1 mm,and the energy recovery rate is about 70%~80%.展开更多
Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure in...Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure infiltration, which was an integrated technique and could provide high vacuum and high infiltration pressure. The effect of specific pressure on the infiltration quality of the obtained composites was comparatively evaluated through microstructure observation. The experimental results show that satisfied Cf/Al composites could be fabricated at the specific pressure of 75 MPa. In this case, the preform was infiltrated much more completely by aluminum alloy liquid, and the residual porosity was seldom found. It is found that the ultimate tensile strength of the obtained Cf/Al composite reached maximum at the specific pressure of 75 MPa, which was improved by 138.9% compared with that of matrix alloy.展开更多
The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cr...The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.展开更多
Electrochemical CO reduction reaction(CORR) provides a promising approach for producing valuable multicarbon products(C_(2+)), while the low solubility of CO in aqueous solution and high energy barrier of C–C couplin...Electrochemical CO reduction reaction(CORR) provides a promising approach for producing valuable multicarbon products(C_(2+)), while the low solubility of CO in aqueous solution and high energy barrier of C–C coupling as well as the competing hydrogen evolution reaction(HER) largely limit the efficiency for C_(2+)production in CORR. Here we report an overturn on the Faradaic efficiency of CORR from being HER-dominant to C_(2+)formation-dominant over a wide potential window, accompanied by a significant activity enhancement over a Moss-like Cu catalyst via pressuring CO. With the CO pressure rising from 1 to 40 atm, the C_(2+)Faradaic efficiency and partial current density remarkably increase from 22.8%and 18.9 mA cm^(-2)to 89.7% and 116.7 mA cm^(-2), respectively. Experimental and theoretical investigations reveal that high pressure-induced high CO coverage on metallic Cu surface weakens the Cu–C bond via reducing electron transfer from Cu to adsorbed CO and restrains hydrogen adsorption, which significantly facilitates the C–C coupling while suppressing HER on the predominant Cu(111) surface, thereby boosting the CO electroreduction to C_(2+)activity.展开更多
The American Diabetes Association (ADA) 2013 guidelines state that a reasonable hemoglobin A1c goal for many nonpregnant adults with diabetes is less than 7.0% a hemoglobin A1c level of less than 6.5% may be considere...The American Diabetes Association (ADA) 2013 guidelines state that a reasonable hemoglobin A1c goal for many nonpregnant adults with diabetes is less than 7.0% a hemoglobin A1c level of less than 6.5% may be considered in adults with short duration of diabetes, long life expectancy, and no significant cardiovascular disease if this can be achieved without significant hypoglycemia or other adverse effects of treatment. A hemoglobin A1c level less than 8.0% may be appropriate for patients with a history of severe hypoglycemia, limited life expectancy, advanced macrovascular and microvascular complications, extensive comorbidities, and long-standing diabetes in whom the hemoglobin A1c goal is difficult to attain despite multiple glucoselowering drugs including insulin. The ADA 2013 guidelines recommend that the systolic blood pressure in most diabetics with hypertension should be reduced to less than 140 mmHg. These guidelines also recommend use of an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker in the treatment of hypertension in diabetics unless they are pregnant. Diabetics at high risk for cardiovascular events should have theirserum low-density lipoprotein (LDL) cholesterol lowered to less than 70 mg/dL with statins. Lower-risk diabetics should have their serum LDL cholesterol reduced to less than 100 mg/dL. Combination therapy of a statin with either a fibrate or niacin has not been shown to provide additional cardiovascular benefit above statin therapy alone and is not recommended. Hypertriglyceridemia should be treated with dietary and lifestyle changes. Severe hypertriglyceridemia should be treated with drug therapy to reduce the risk of acute pancreatitis.展开更多
Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sic...Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sichuan University(SCU-PSI).The properties of the contaminated films on the surface of pristine and He-plasma pre-irradiated tungsten matrix,such as morphology,crystalline structure,element composition and chemical structure were characterized by scanning electron microscopy,grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy.The experimental results revealed that the removal of C–N film with a thickness of tens of microns can be realized through APPJ cleaning regardless of the morphology of the substrates.Similar removal rates of 16.82 and 13.78μm min^(-1)were obtained for C–N films deposited on a smooth pristine W surface and rough fuzz-covered W surface,respectively.This is a remarkable improvement in comparison to the traditional cleaning method.However,slight surface oxidation was found after APPJ cleaning,but the degree of oxidation was acceptable with an oxidation depth increase of only 3.15 nm.Optical emission spectroscopy analysis and mass spectrometry analysis showed that C–N contamination was mainly removed through chemical reaction with reactive oxygen species during APPJ treatment using air as the working gas.These results make APPJ cleaning a potentially effective method for the rapid removal of C–N films from the wall surfaces of fusion devices.展开更多
Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juic...Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juices were investigated under 20 - 80 MPa, 35 - 58℃, pH 3. 0 - 6. 0 and processing time 0-8 min. Results showed that the loss of Vc increased with elevated processing temperatures(50 MPa, 4 min). When the temperature of raw juices was 35℃, the retention of total Vc was higher under 40 - 60 MPa than that under the pressure < 40 MPa or > 60 MPa, and it was up to 94%(4 min). The retention of total Vc decreases slowly within 6 min, but rapidly after 6 min. The pH can also influence the retention of total Vc, and this retention can come to a highest point at pH 6.0.展开更多
We synthesized C60 quantum dots(QDs) with a uniform size by a modified ultrasonic process and studied its polymerization under high pressure and high temperature(HPHT).Raman spectra showed that a phase assemblage of a...We synthesized C60 quantum dots(QDs) with a uniform size by a modified ultrasonic process and studied its polymerization under high pressure and high temperature(HPHT).Raman spectra showed that a phase assemblage of a dimer(D) phase(62 vol%) and a one-dimensional chain orthorhombic(O) phase(38 vol%) was obtained at 1.5 GPa and 300℃.At 2.0 GPa and 430℃,the proportion of the O phase increased to 46 vol%,while the corresponding D phase decreased to 54 vol%.Compared with bulk and nanosized C60,C60 QDs cannot easily form a high-dimensional polymeric structure.This fact is probably caused by the small particle size,orientation of the disordered structure of C60 QDs,and the barrier of oxide function groups between C60 molecules.Our studies enhance the understanding of the polymerization behavior of low-dimension C60 nanomaterials under HPHT conditions.展开更多
Objective Calcium Voltage-Gated Channel Subunit Alpha1 C(CACNA1C)gene encodes an alpha-1 subunit of a voltage-dependent calcium channel.This subunit forms the pore through which calcium ions pass into the cell and pla...Objective Calcium Voltage-Gated Channel Subunit Alpha1 C(CACNA1C)gene encodes an alpha-1 subunit of a voltage-dependent calcium channel.This subunit forms the pore through which calcium ions pass into the cell and plays an important role in regulating blood pressure.Smoking habit has been proven become the risk factor of hypertension.This study aimed to investigate the interaction of variants in CACNA1C gene with smoke in blood pressure(BP)responses to dietary sodium and potassium intervention.展开更多
The in situ electrical resistance and transport activation energies of solid C60 fullerene have been measured under high pressure up to 25 GPa in the temperature range of 300-423 K by using a designed diamond anvil ce...The in situ electrical resistance and transport activation energies of solid C60 fullerene have been measured under high pressure up to 25 GPa in the temperature range of 300-423 K by using a designed diamond anvil cell. In the experiment, four parts of boron-doped diamond films fabricated on one anvil were used as electrical measurement probes and a W-Ta thin film thermocouple which was integrated on the other diamond anvil was used to measure the temperature. The current results indicate that the measured high-pressure resistances are bigger than those reported before at the same pressure and there is no pressure-independent resistance increase before 8 GPa. From the temperature dependence of the resistivity, the C60 behaviors as a semiconductor and the activation energies of the cubic C60 fullerene are 0,49, 0.43, and 0.36 eV at 13, 15, and 19 GPa, respectively.展开更多
The equation of state(EOS)of Cr3C2 at high pressure is studied by the synchrotron radiation x-ray diffraction(XRD)in a diamond anvil cell(DAC)at ambient temperature,and density functional theory(DFT).The XRD analysis ...The equation of state(EOS)of Cr3C2 at high pressure is studied by the synchrotron radiation x-ray diffraction(XRD)in a diamond anvil cell(DAC)at ambient temperature,and density functional theory(DFT).The XRD analysis shows that the orthorhombic structure is maintained to a maximum pressure of 44.5 GPa.The XRD data show that the bulk modulus is K0=292(18)GPa with K0'=3.25(0.85).In addition,the high-pressure compression behavior of Cr3C2 is studied by first principles calculations.The obtained bulk modulus of Cr3C2 is 323(1)GPa.展开更多
In order to overcome the deficiencies of traditional pressure sensors, a kind of intelligent pressure sensors with temperature correction is designed. Qccording to the intelligent sensor system of composition and rang...In order to overcome the deficiencies of traditional pressure sensors, a kind of intelligent pressure sensors with temperature correction is designed. Qccording to the intelligent sensor system of composition and range of applications, with fully taking into account the parameters of the connection between of co-ordination, we chose a good usability, high reliability and low cost components composed of the entire measurement system, with controlling and dealing with in 80C51 miller, the system had the temperature and pressure parameters with automatic measurement, amplification, A/D conversion, the weak signal locked amplification, as well as PhaseSensitive Detection (PSD), common-mode signal rejection, the collected signal de-noising processing, cross-sensitivity of the decoupling and show the results. It also has a self-test, automatic temperature condition and on, site communications and other functions.展开更多
Background: Septic open abdomens occur in trauma, burn and surgery. Currently, multiple concentrations of hypochlorous acid solutions have effectively decreased the microbiotic burden in wounds. We hypothesized that V...Background: Septic open abdomens occur in trauma, burn and surgery. Currently, multiple concentrations of hypochlorous acid solutions have effectively decreased the microbiotic burden in wounds. We hypothesized that Vashe?, a neutral hypochlorous acid solution (V-HOCL), would be safe as an intraperitoneal irrigation or washout disinfectant for septic open abdomens utilizing negative pressure wound therapy. Methods: This is a retrospective observational review of patients who required delayed abdominal closures after exploratory laparotomies. Group A (n = 8) had cyclical V-HOCL irrigation to their open abdomens combining AbtheraTM and V.A.C. Dressing System for negative pressure wound therapy with irrigation (NPWT-i) and Group B (n = 9) had intra-abdominal V-HOCL washouts. Results: Fifty percent of both groups had either septic or hemorrhagic shock on admission. Compared to Group B, Group A patients were older (median 50 vs 37 years), and had a median hospitalization of 28 vs 8 days, 4 times as many operations, more acute renal failure and co-morbidities. No statistically significant differences were detected be-tween the two treatment methods with the V-HOCL delivery and removal. Conclusion: There were no episodes of electrolyte imbalance, hypotension, hypertension, anaphylaxis, hemorrhage, visceral injury or systemic toxicity. V-HOCL with/without NPWT-i irrigation was a safe modality and tolerated well in this study.展开更多
Two-dimensional(2D) materials and their heterostructures have attracted a lot of attention due to their unique electronic and optical properties. MoS_2 as the most typical 2D semiconductors has great application poten...Two-dimensional(2D) materials and their heterostructures have attracted a lot of attention due to their unique electronic and optical properties. MoS_2 as the most typical 2D semiconductors has great application potential in thin film transistors, photodetector, hydrogen evolution reaction, memory device, etc. However, the performance of MoS_2 devices is limited by the contact resistance and the improvement of its contact quality is important. In this work, we report the experimental investigation of pressure-enhanced contact quality between monolayer MoS_2 and graphite by conductive atom force microscope(C-AFM). It was found that at high pressure, the contact quality between graphite and MoS_2 is significantly improved. This pressure-mediated contact quality improvement between MoS_2 and graphite comes from the enhanced charge transfer between MoS_2 and graphite when MoS_2 is stretched. Our results provide a new way to enhance the contact quality between MoS_2 and graphite for further applications.展开更多
Some dislocations, which are generated in the diamond single crystal during the diamond crystal growth from Fe-Ni-C system, may affect diamond crystal growth mode at high temperature-high pressure (HPHT). The concentr...Some dislocations, which are generated in the diamond single crystal during the diamond crystal growth from Fe-Ni-C system, may affect diamond crystal growth mode at high temperature-high pressure (HPHT). The concentric dislocation loops were successfully examined by Moire images. The surface morphologies of growing and as-grown diamond single crystals were observed by scanning electron microscopy (SEM). The concentric dislocation loops formation process and their effect on the diamond crystal growth mode were analyzed. It should be noted that whatever the nature of the dislocation is, should the Burgers vector of dislocation has a component at the direction normal to the growth interface, the dislocation will make the face parallel to the growth interface grow into spiral face. The presence of consecutive spiral steps on the diamond crystal surface also provides a direct evidence of the dislocation mechanism of diamond crystal growth.展开更多
High hydrostatic pressure assisted extraction (HHPE) has several advantages when compared to traditional extraction methods, which frequently cause degradation and loss of target components and might consume large vol...High hydrostatic pressure assisted extraction (HHPE) has several advantages when compared to traditional extraction methods, which frequently cause degradation and loss of target components and might consume large volumes of environmentally unfriendly solvents. The aim of this study was to develop an assisted extraction method using high hydrostatic pressure (HHPE) and to evaluate both HHPE and conventional extraction methods for β-carotene, antioxidant compounds and vitamin C from cape gooseberry. β-carotene and compounds with antioxidant activity (2,2-diphenyl-1-picrylhydrazyl radical assay (DPPH*) or radical scavenging activity;ferric reducing antioxidant power assay (FRAP)) were extracted using HHPE for 5 min, 10 min and 15 min at 500 MPa, while vitamin C was extracted at 500 MPa for 30 s, 60 s and 90 s. Processing significantly affected (p ≤ 0.05) the β-carotene content of all samples, increasing retention by 8%, 14% and 15% at 500 MPa after 5 min, 10 min and 15 min of HPPE, respectively. The highest antioxidant content determined by DPPH* and FRAP assays was obtained in a sample treated at 500 MPa for 15 min, showing increases of 26% and 51%, respectively, compared with an untreated sample. The ascorbic acid content of fresh cape gooseberry was 26.31 mg·100 g-1. In fact, the ascorbic acid levels were significantly higher for all high-pressure-treated samples compared to this of conventionally extracted sample (p ≤ 0.05), exhibiting increases of 9%, 41% and 53% at 500 MPa after 30 s, 60 s and 90 s of HPPE, respectively. Thus, the application of HHPE produced higher β-carotene content, antioxidant compounds and vitamin C content and required less extraction time compared to other extraction methods. The pharmaceutical and food industries can benefit by using high pressure extraction technology.展开更多
基金the National Natural Science Foundation of China(No.52175103)。
文摘An autonomous altitude adjustment system for a stratospheric satellite(StratoSat)platform is proposed.This platform consists of a helium balloon,a ballonet,and a two-way blower.The helium balloon generates lift to balance the platform gravity.The two-way blower inflates and deflates the ballonet to regulate the buoyancy.Altitude adjustment is achieved by tracking the differential pressure difference(DPD),and a threshold switching strategy is used to achieve blower flow control.The vertical acceleration regulation ability is decided not only by the blower flow rate,but also by the designed margin of pressure difference(MPD).Pressure difference is a slow-varying variable compared with altitude,and it is adopted as the control variable.The response speed of the actuator to disturbance can be delayed,and the overshoot caused by the large inertia of the platform is inhibited.This method can maintain a high tracking accuracy and reduce the complexity of model calculation,thus improving the robustness of controller design.
基金supported by the National Natural Science Foundation of China(Granted Nos.51827801,52371152)the Foundation of National Key Laboratory of Precision Hot Processing of Metals(Granted No.DCQQ2790100724).
文摘During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity cross-section enlarges.This rapid increasement of liquid metal inlet velocity causes serious entrapment of gas and oxide films,and results in various casting defects such as the bifilm defects.These defects detrimentally deteriorate mechanical properties of the castings.To address this issue,an innovative nonlinear pressurization strategy timely matching to the casting structure was proposed.The pressurization rate decreases at sections where the cross-section widens,but it gradually increases as the liquid metal level rises.By this way,the inlet velocity remains below a critical threshold to prevent the entrapment of gas and oxide films.Comparative analyses involving numerical simulations and casting verification illustrate that the nonlinear pressurization technique,compared to the linear pressurization,effectively diminishes both the size and number of bifilm defects.Furthermore,the nonlinear pressurization method enhances the casting yield strength by 10%,tensile strength by 14%,and elongation by 10%.Examination through scanning electron microscopy highlights that the bifilm defects arising from the linear pressurization process result in the reduction of the castings’mechanical properties.These observations underscore the efficacy of nonlinear pressurization in enhancing the quality and reliability of gigantic castings,as exemplified by a 5.4-ton extra-large sized C95800 copper alloy propeller hub with complex structures in the current study.
基金supported by National Natural Science Foundation of China (No. 50437030)
文摘Structural design and tests on the characteristics of the SF6 gas switch with a small gap are presented. This kind of switch often works under high pressure and nanosecond pulse for getting pulse with faster risetime. The breakdown voltage and breakdown delay of a number of switches with different geometries, gas pressures and pulse waveforms were investigated. Experimental results suggested that the breakdown voltage increases linearly with the gas pressure, and the breakdown delay decreases with an increase in the gas pressure and a reduction in the gap distance of the switch under the same applied pulse. By using this kind of switch with a gap of 3 mm as a peaking switch, a pulse generator can provide an output voltage with a peak voltage of 300 kV and a risetime of 3 ns on a resistance load of 150Ω.
基金the National Natural Science Foundation of China(No.51575471)the Natural Science Foundation of Hebei Province(No.E2018203028).
文摘Aiming at the problem of large energy consumption in hydraulic control system with large load and variable working conditions,based on the multi-level pressure switching control system(MPSCS),a multi-level pressure switching control system based on independent metering control is proposed combined with the independent metering control technology.The configuration principle of the system is given,the mathematical model of this system is established,and the control strategy of the system under 4 different working quadrants is put forward.Finally,the control performance and energy saving characteristics of the system are tested.The test results show that the switching of high and low pressure power supply has a certain effect on the response of step position and ramp position under impedance working condition.The displacement curves show slow climbing or abrupt change of ramp position,and the position accuracy is less than 1 mm.The multi-level pressure switching control system based on independent metering control can recover and store energy under the transcendence working conditions.The control accuracy is about 1 mm,and the energy recovery rate is about 70%~80%.
基金Projects(51221001,51275417)supported by the National Natural Science Foundation of ChinaProject(SKLSP201103)supported by the Fund of the State Key Laboratory of Solidification ProcessingProject(B08040)supported by the Introducing Talents of Discipline toUniversities,China
文摘Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure infiltration, which was an integrated technique and could provide high vacuum and high infiltration pressure. The effect of specific pressure on the infiltration quality of the obtained composites was comparatively evaluated through microstructure observation. The experimental results show that satisfied Cf/Al composites could be fabricated at the specific pressure of 75 MPa. In this case, the preform was infiltrated much more completely by aluminum alloy liquid, and the residual porosity was seldom found. It is found that the ultimate tensile strength of the obtained Cf/Al composite reached maximum at the specific pressure of 75 MPa, which was improved by 138.9% compared with that of matrix alloy.
基金Supported by the National Natural Science Foundation of China (20876107) the Opening Project of State Key Laboratory of Chemical Engineering (SKL-ChE-08B06)
文摘The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.
基金financial support from the National Key R&D Program of China (Nos. 2022YFA1504500, 2022YFA1503100)the National Natural Science Foundation of China (Nos. 21988101, 21890753, 22225204, 92145301, 22002160 and 22272174)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB36030200)the CAS Project for Young Scientists in Basic Research (No. YSBR-028)the Fundamental Research Funds for the Central Universities (No. 20720220008)the Dalian National Lab for Clean Energy (DNL Cooperation Fund 202001)the Innovation Research Fund Project of DICP (No. DICP I202016)。
文摘Electrochemical CO reduction reaction(CORR) provides a promising approach for producing valuable multicarbon products(C_(2+)), while the low solubility of CO in aqueous solution and high energy barrier of C–C coupling as well as the competing hydrogen evolution reaction(HER) largely limit the efficiency for C_(2+)production in CORR. Here we report an overturn on the Faradaic efficiency of CORR from being HER-dominant to C_(2+)formation-dominant over a wide potential window, accompanied by a significant activity enhancement over a Moss-like Cu catalyst via pressuring CO. With the CO pressure rising from 1 to 40 atm, the C_(2+)Faradaic efficiency and partial current density remarkably increase from 22.8%and 18.9 mA cm^(-2)to 89.7% and 116.7 mA cm^(-2), respectively. Experimental and theoretical investigations reveal that high pressure-induced high CO coverage on metallic Cu surface weakens the Cu–C bond via reducing electron transfer from Cu to adsorbed CO and restrains hydrogen adsorption, which significantly facilitates the C–C coupling while suppressing HER on the predominant Cu(111) surface, thereby boosting the CO electroreduction to C_(2+)activity.
文摘The American Diabetes Association (ADA) 2013 guidelines state that a reasonable hemoglobin A1c goal for many nonpregnant adults with diabetes is less than 7.0% a hemoglobin A1c level of less than 6.5% may be considered in adults with short duration of diabetes, long life expectancy, and no significant cardiovascular disease if this can be achieved without significant hypoglycemia or other adverse effects of treatment. A hemoglobin A1c level less than 8.0% may be appropriate for patients with a history of severe hypoglycemia, limited life expectancy, advanced macrovascular and microvascular complications, extensive comorbidities, and long-standing diabetes in whom the hemoglobin A1c goal is difficult to attain despite multiple glucoselowering drugs including insulin. The ADA 2013 guidelines recommend that the systolic blood pressure in most diabetics with hypertension should be reduced to less than 140 mmHg. These guidelines also recommend use of an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker in the treatment of hypertension in diabetics unless they are pregnant. Diabetics at high risk for cardiovascular events should have theirserum low-density lipoprotein (LDL) cholesterol lowered to less than 70 mg/dL with statins. Lower-risk diabetics should have their serum LDL cholesterol reduced to less than 100 mg/dL. Combination therapy of a statin with either a fibrate or niacin has not been shown to provide additional cardiovascular benefit above statin therapy alone and is not recommended. Hypertriglyceridemia should be treated with dietary and lifestyle changes. Severe hypertriglyceridemia should be treated with drug therapy to reduce the risk of acute pancreatitis.
基金funded by National Key Research, Development Program of China (No. 2017YFE0301305KYWX-002)Sichuan Science and Technology Program (No. 2021YFSY0015)
文摘Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sichuan University(SCU-PSI).The properties of the contaminated films on the surface of pristine and He-plasma pre-irradiated tungsten matrix,such as morphology,crystalline structure,element composition and chemical structure were characterized by scanning electron microscopy,grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy.The experimental results revealed that the removal of C–N film with a thickness of tens of microns can be realized through APPJ cleaning regardless of the morphology of the substrates.Similar removal rates of 16.82 and 13.78μm min^(-1)were obtained for C–N films deposited on a smooth pristine W surface and rough fuzz-covered W surface,respectively.This is a remarkable improvement in comparison to the traditional cleaning method.However,slight surface oxidation was found after APPJ cleaning,but the degree of oxidation was acceptable with an oxidation depth increase of only 3.15 nm.Optical emission spectroscopy analysis and mass spectrometry analysis showed that C–N contamination was mainly removed through chemical reaction with reactive oxygen species during APPJ treatment using air as the working gas.These results make APPJ cleaning a potentially effective method for the rapid removal of C–N films from the wall surfaces of fusion devices.
文摘Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juices were investigated under 20 - 80 MPa, 35 - 58℃, pH 3. 0 - 6. 0 and processing time 0-8 min. Results showed that the loss of Vc increased with elevated processing temperatures(50 MPa, 4 min). When the temperature of raw juices was 35℃, the retention of total Vc was higher under 40 - 60 MPa than that under the pressure < 40 MPa or > 60 MPa, and it was up to 94%(4 min). The retention of total Vc decreases slowly within 6 min, but rapidly after 6 min. The pH can also influence the retention of total Vc, and this retention can come to a highest point at pH 6.0.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFA0305900)the National Natural Science Foundation of China(Grant Nos.11634004 and 11404036)+2 种基金“the 13th Five-year”Planning Project of Jilin Provincial Education Department Foundation,China(Grant No.20190504)JLU Science and Technology Innovative Research Team,China(Grant No.2017TD-01)Natural Science Foundation of Chang-chun Normal University,China(Grant No.2014-001).
文摘We synthesized C60 quantum dots(QDs) with a uniform size by a modified ultrasonic process and studied its polymerization under high pressure and high temperature(HPHT).Raman spectra showed that a phase assemblage of a dimer(D) phase(62 vol%) and a one-dimensional chain orthorhombic(O) phase(38 vol%) was obtained at 1.5 GPa and 300℃.At 2.0 GPa and 430℃,the proportion of the O phase increased to 46 vol%,while the corresponding D phase decreased to 54 vol%.Compared with bulk and nanosized C60,C60 QDs cannot easily form a high-dimensional polymeric structure.This fact is probably caused by the small particle size,orientation of the disordered structure of C60 QDs,and the barrier of oxide function groups between C60 molecules.Our studies enhance the understanding of the polymerization behavior of low-dimension C60 nanomaterials under HPHT conditions.
文摘Objective Calcium Voltage-Gated Channel Subunit Alpha1 C(CACNA1C)gene encodes an alpha-1 subunit of a voltage-dependent calcium channel.This subunit forms the pore through which calcium ions pass into the cell and plays an important role in regulating blood pressure.Smoking habit has been proven become the risk factor of hypertension.This study aimed to investigate the interaction of variants in CACNA1C gene with smoke in blood pressure(BP)responses to dietary sodium and potassium intervention.
基金supported by the National Basic Research Program of China (Grant No. 2011CB808204)the National Natural Science Foundation of China (Grant Nos. 11074094 and 91014004)the Fundamental Research Funds for Jilin University, China (Grant No. 450060491500)
文摘The in situ electrical resistance and transport activation energies of solid C60 fullerene have been measured under high pressure up to 25 GPa in the temperature range of 300-423 K by using a designed diamond anvil cell. In the experiment, four parts of boron-doped diamond films fabricated on one anvil were used as electrical measurement probes and a W-Ta thin film thermocouple which was integrated on the other diamond anvil was used to measure the temperature. The current results indicate that the measured high-pressure resistances are bigger than those reported before at the same pressure and there is no pressure-independent resistance increase before 8 GPa. From the temperature dependence of the resistivity, the C60 behaviors as a semiconductor and the activation energies of the cubic C60 fullerene are 0,49, 0.43, and 0.36 eV at 13, 15, and 19 GPa, respectively.
基金the Project of Ph.D.Special Research of Sichuan University of Arts and Science,China(Grant No.2019BS006Z)the Fund from the Chinese Academy of Sciences(Grant Nos.KJCX2-SW-N03 and KJCX2-SW-N20).
文摘The equation of state(EOS)of Cr3C2 at high pressure is studied by the synchrotron radiation x-ray diffraction(XRD)in a diamond anvil cell(DAC)at ambient temperature,and density functional theory(DFT).The XRD analysis shows that the orthorhombic structure is maintained to a maximum pressure of 44.5 GPa.The XRD data show that the bulk modulus is K0=292(18)GPa with K0'=3.25(0.85).In addition,the high-pressure compression behavior of Cr3C2 is studied by first principles calculations.The obtained bulk modulus of Cr3C2 is 323(1)GPa.
文摘In order to overcome the deficiencies of traditional pressure sensors, a kind of intelligent pressure sensors with temperature correction is designed. Qccording to the intelligent sensor system of composition and range of applications, with fully taking into account the parameters of the connection between of co-ordination, we chose a good usability, high reliability and low cost components composed of the entire measurement system, with controlling and dealing with in 80C51 miller, the system had the temperature and pressure parameters with automatic measurement, amplification, A/D conversion, the weak signal locked amplification, as well as PhaseSensitive Detection (PSD), common-mode signal rejection, the collected signal de-noising processing, cross-sensitivity of the decoupling and show the results. It also has a self-test, automatic temperature condition and on, site communications and other functions.
文摘Background: Septic open abdomens occur in trauma, burn and surgery. Currently, multiple concentrations of hypochlorous acid solutions have effectively decreased the microbiotic burden in wounds. We hypothesized that Vashe?, a neutral hypochlorous acid solution (V-HOCL), would be safe as an intraperitoneal irrigation or washout disinfectant for septic open abdomens utilizing negative pressure wound therapy. Methods: This is a retrospective observational review of patients who required delayed abdominal closures after exploratory laparotomies. Group A (n = 8) had cyclical V-HOCL irrigation to their open abdomens combining AbtheraTM and V.A.C. Dressing System for negative pressure wound therapy with irrigation (NPWT-i) and Group B (n = 9) had intra-abdominal V-HOCL washouts. Results: Fifty percent of both groups had either septic or hemorrhagic shock on admission. Compared to Group B, Group A patients were older (median 50 vs 37 years), and had a median hospitalization of 28 vs 8 days, 4 times as many operations, more acute renal failure and co-morbidities. No statistically significant differences were detected be-tween the two treatment methods with the V-HOCL delivery and removal. Conclusion: There were no episodes of electrolyte imbalance, hypotension, hypertension, anaphylaxis, hemorrhage, visceral injury or systemic toxicity. V-HOCL with/without NPWT-i irrigation was a safe modality and tolerated well in this study.
基金Project supported by the National Key R&D Program,China(Grant No.2016YFA0300904)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH004)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDPB06 and XDB07010100)the National Natural Science Foundation of China(Grant Nos.61734001 and 51572289)
文摘Two-dimensional(2D) materials and their heterostructures have attracted a lot of attention due to their unique electronic and optical properties. MoS_2 as the most typical 2D semiconductors has great application potential in thin film transistors, photodetector, hydrogen evolution reaction, memory device, etc. However, the performance of MoS_2 devices is limited by the contact resistance and the improvement of its contact quality is important. In this work, we report the experimental investigation of pressure-enhanced contact quality between monolayer MoS_2 and graphite by conductive atom force microscope(C-AFM). It was found that at high pressure, the contact quality between graphite and MoS_2 is significantly improved. This pressure-mediated contact quality improvement between MoS_2 and graphite comes from the enhanced charge transfer between MoS_2 and graphite when MoS_2 is stretched. Our results provide a new way to enhance the contact quality between MoS_2 and graphite for further applications.
基金Thi work was supported by the Nstional Natural ScienceFoundation of China (Grant. No 593T1027).
文摘Some dislocations, which are generated in the diamond single crystal during the diamond crystal growth from Fe-Ni-C system, may affect diamond crystal growth mode at high temperature-high pressure (HPHT). The concentric dislocation loops were successfully examined by Moire images. The surface morphologies of growing and as-grown diamond single crystals were observed by scanning electron microscopy (SEM). The concentric dislocation loops formation process and their effect on the diamond crystal growth mode were analyzed. It should be noted that whatever the nature of the dislocation is, should the Burgers vector of dislocation has a component at the direction normal to the growth interface, the dislocation will make the face parallel to the growth interface grow into spiral face. The presence of consecutive spiral steps on the diamond crystal surface also provides a direct evidence of the dislocation mechanism of diamond crystal growth.
基金The authors wish to acknowledge the financial support of Fondecyt Regular n°1120069CEAZA and the Research Department of Universidad de La Serena(DIULS).
文摘High hydrostatic pressure assisted extraction (HHPE) has several advantages when compared to traditional extraction methods, which frequently cause degradation and loss of target components and might consume large volumes of environmentally unfriendly solvents. The aim of this study was to develop an assisted extraction method using high hydrostatic pressure (HHPE) and to evaluate both HHPE and conventional extraction methods for β-carotene, antioxidant compounds and vitamin C from cape gooseberry. β-carotene and compounds with antioxidant activity (2,2-diphenyl-1-picrylhydrazyl radical assay (DPPH*) or radical scavenging activity;ferric reducing antioxidant power assay (FRAP)) were extracted using HHPE for 5 min, 10 min and 15 min at 500 MPa, while vitamin C was extracted at 500 MPa for 30 s, 60 s and 90 s. Processing significantly affected (p ≤ 0.05) the β-carotene content of all samples, increasing retention by 8%, 14% and 15% at 500 MPa after 5 min, 10 min and 15 min of HPPE, respectively. The highest antioxidant content determined by DPPH* and FRAP assays was obtained in a sample treated at 500 MPa for 15 min, showing increases of 26% and 51%, respectively, compared with an untreated sample. The ascorbic acid content of fresh cape gooseberry was 26.31 mg·100 g-1. In fact, the ascorbic acid levels were significantly higher for all high-pressure-treated samples compared to this of conventionally extracted sample (p ≤ 0.05), exhibiting increases of 9%, 41% and 53% at 500 MPa after 30 s, 60 s and 90 s of HPPE, respectively. Thus, the application of HHPE produced higher β-carotene content, antioxidant compounds and vitamin C content and required less extraction time compared to other extraction methods. The pharmaceutical and food industries can benefit by using high pressure extraction technology.