The anaerobic/anoxic/oxic(A2O) process is globally one of the widely used biological sewage treatment processes. This is the first report of a metagenomic analysis using Illumina sequencing of full-scale A2O sludge ...The anaerobic/anoxic/oxic(A2O) process is globally one of the widely used biological sewage treatment processes. This is the first report of a metagenomic analysis using Illumina sequencing of full-scale A2O sludge from a municipal sewage treatment plant.With more than 530,000 clean reads from different taxa and metabolic categories, the metagenome results allow us to gain insight into the functioning of the biological community of the A2O sludge. There are 51 phyla and nearly 900 genera identified from the A2O activated sludge ecosystem. Proteobacteria, Bacteroidetes, Nitrospirae and Chloroflexi are predominant phyla in the activated sludge, suggesting that these organisms play key roles in the biodegradation processes in the A2O sewage treatment system.Nitrospira, Thauera, Dechloromonas and Ignavibacterium, which have abilities to metabolize nitrogen and aromatic compounds, are most prevalent genera. The percent of nitrogen and phosphorus metabolism in the A2O sludge is 2.72% and 1.48%, respectively. In the current A2O sludge, the proportion of Candidatus Accumulibacter is 1.37%, which is several times more than that reported in a recent study of A2O sludge. Among the four processes of nitrogen metabolism, denitrification related genes had the highest number of sequences(76.74%), followed by ammonification(15.77%), nitrogen fixation(3.88%) and nitrification(3.61%). In phylum Planctomycetes, four genera(Planctomyces, Pirellula, Gemmata and Singulisphaera) are included in the top 30 abundant genera, suggesting the key role of ANAMMOX in nitrogen metabolism in the A2O sludge.展开更多
Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feedi...Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feeding process achieves over 80% total nitrogen (TN) removal efficiency, but the TN removal efficiency of the A/O process is only 40%. Moreover, filamentous sludge bulking can be well restrained in the step-feeding process. Given the conditions of a returned sludge ratio of 100% and a nitrifying liquor recycle ratio of 200%, the TN removal efficiency is 78.32% in the A/O process, but the sludge volume index (SVI) value increases to 143 mL/g. In the step-feeding process, the SVI is only 94.4 mL/g when the TN removal efficiency reaches 81. 1%. The step-feeding process has distinct advantages over the A/O process in the aspects of practicability, nitrogen removal and operating stability.展开更多
为保证城镇污水厂出水总磷达标排放,以A^2/O工艺为研究对象,采用生物除磷与前置化学除磷相耦合的方法,重点考察Al_2(SO_4)_3投加量对出水TP含量以及反应器内活性污泥性能的影响。结果表明,铝、磷摩尔比为1:1时,出水COD和TP、NH4^+-N、T...为保证城镇污水厂出水总磷达标排放,以A^2/O工艺为研究对象,采用生物除磷与前置化学除磷相耦合的方法,重点考察Al_2(SO_4)_3投加量对出水TP含量以及反应器内活性污泥性能的影响。结果表明,铝、磷摩尔比为1:1时,出水COD和TP、NH4^+-N、TN含量均达到了GB 18918-2002的一级A标准;铝、磷摩尔比为0.5:1时,出水TP的质量浓度则高达2.0 mg/L左右。铝、磷摩尔比为1:1时,好氧污泥SVI由投药前的87.4 m L/g降至74.2 m L/g,ζ电位由-4.73 m V降至-7.16 m V,氧吸收速率由3.185 mg/(g·min)升到3.462 mg/(g·min),胞外聚合物(EPS)的总量由66.25mg/g升到105.2 mg/g,蛋白质与多糖的质量比由5.23降至2.09,表明污泥活性、沉降性能、脱水性能增强。进行好氧污泥微生物群落结构分析,发现铝、磷摩尔比为1:1时微生物种属由投药前8种减为5种,微生物丰度降低,拟杆菌和绿弯菌的比例有所上升,与变形菌一起成为反应器内优势菌群。展开更多
基金supported by the National Natural Science Foundation of China (No. 41430643)
文摘The anaerobic/anoxic/oxic(A2O) process is globally one of the widely used biological sewage treatment processes. This is the first report of a metagenomic analysis using Illumina sequencing of full-scale A2O sludge from a municipal sewage treatment plant.With more than 530,000 clean reads from different taxa and metabolic categories, the metagenome results allow us to gain insight into the functioning of the biological community of the A2O sludge. There are 51 phyla and nearly 900 genera identified from the A2O activated sludge ecosystem. Proteobacteria, Bacteroidetes, Nitrospirae and Chloroflexi are predominant phyla in the activated sludge, suggesting that these organisms play key roles in the biodegradation processes in the A2O sewage treatment system.Nitrospira, Thauera, Dechloromonas and Ignavibacterium, which have abilities to metabolize nitrogen and aromatic compounds, are most prevalent genera. The percent of nitrogen and phosphorus metabolism in the A2O sludge is 2.72% and 1.48%, respectively. In the current A2O sludge, the proportion of Candidatus Accumulibacter is 1.37%, which is several times more than that reported in a recent study of A2O sludge. Among the four processes of nitrogen metabolism, denitrification related genes had the highest number of sequences(76.74%), followed by ammonification(15.77%), nitrogen fixation(3.88%) and nitrification(3.61%). In phylum Planctomycetes, four genera(Planctomyces, Pirellula, Gemmata and Singulisphaera) are included in the top 30 abundant genera, suggesting the key role of ANAMMOX in nitrogen metabolism in the A2O sludge.
基金The Project of Scientific Research Base and Scientific Innovation Platform of Beijing Municipal Education Commission (No.PXM2008-014204-050843)the Project of Beijing Science and Technology Committee (No.D07050601500000)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences (No.RCEES-QN-200706)the Special Funds for Young Scholars of RCEES,CAS.
文摘Two biological nitrogen removal processes are compared in the aspect of nitrogen removal, process operation and energy saving. Results show that when the returned sludge ratio is 50% of the inflow rate, the step-feeding process achieves over 80% total nitrogen (TN) removal efficiency, but the TN removal efficiency of the A/O process is only 40%. Moreover, filamentous sludge bulking can be well restrained in the step-feeding process. Given the conditions of a returned sludge ratio of 100% and a nitrifying liquor recycle ratio of 200%, the TN removal efficiency is 78.32% in the A/O process, but the sludge volume index (SVI) value increases to 143 mL/g. In the step-feeding process, the SVI is only 94.4 mL/g when the TN removal efficiency reaches 81. 1%. The step-feeding process has distinct advantages over the A/O process in the aspects of practicability, nitrogen removal and operating stability.
文摘为保证城镇污水厂出水总磷达标排放,以A^2/O工艺为研究对象,采用生物除磷与前置化学除磷相耦合的方法,重点考察Al_2(SO_4)_3投加量对出水TP含量以及反应器内活性污泥性能的影响。结果表明,铝、磷摩尔比为1:1时,出水COD和TP、NH4^+-N、TN含量均达到了GB 18918-2002的一级A标准;铝、磷摩尔比为0.5:1时,出水TP的质量浓度则高达2.0 mg/L左右。铝、磷摩尔比为1:1时,好氧污泥SVI由投药前的87.4 m L/g降至74.2 m L/g,ζ电位由-4.73 m V降至-7.16 m V,氧吸收速率由3.185 mg/(g·min)升到3.462 mg/(g·min),胞外聚合物(EPS)的总量由66.25mg/g升到105.2 mg/g,蛋白质与多糖的质量比由5.23降至2.09,表明污泥活性、沉降性能、脱水性能增强。进行好氧污泥微生物群落结构分析,发现铝、磷摩尔比为1:1时微生物种属由投药前8种减为5种,微生物丰度降低,拟杆菌和绿弯菌的比例有所上升,与变形菌一起成为反应器内优势菌群。