This paper presents the experimental investigations of the emissions of SO2, NO and N20 in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of ...This paper presents the experimental investigations of the emissions of SO2, NO and N20 in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of the combustor is 30 kW. The setup is electrically heated during startup. The infuence of the excess air, the degree of the air staging, the biomass share and the feeding position of the fuels on the emissions of SO2, NO and N2O were studied. The results showed that an increase in the biomass shares resulted in an increase of the CO concentration in the flue gas, probably due to the high volatile content of the biomass. In co-firing, the emission of SO2 increased with increasing biomass share slightly, however, non-linear increase relationship between SO2 emission and fuel sulfur content was observed. Air staging significantly decreased the NO emission without raising the SO2 level. Although the change of the fuel feeding position from riser to downer resulted in a decrease in the NO emission level, no obvious change was observed for the SO2 level. Taking the coal feeding position R as a reference, the relative NO emission could significantly decrease during co-firing coal and biomass when feeding fuel at position D and keeping the first stage stoichiometry greater than 0.95. The possible mechanisms of the sulfur and nitrogen chemistry at these conditions were discussed and the ways of simultaneous reduction of SO2, NO and N2O were proposed.展开更多
Abstract:The aim of this research is to design and operate a 10 kW hot chemical-looping gasification(CLG)unit using Fe2O3/Al2O3as an oxygen carrier and saw dust as a fuel.The effect of the operation temperature on gas...Abstract:The aim of this research is to design and operate a 10 kW hot chemical-looping gasification(CLG)unit using Fe2O3/Al2O3as an oxygen carrier and saw dust as a fuel.The effect of the operation temperature on gas composition in the air reactor and the fuel reactor,and the carbon conversion of biomass to CO2and CO in the fuel reactor have been experimentally studied.A total60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina.The results show that CO and H2concentrations are increased with increasing temperature in the fuel reactor.It is also found that with increasing fuel reactor temperature,both the amount of residual char in the fuel reactor and CO2concentration of the exit gas from the air reactor are degreased.Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2production at 870℃reaches the highest rate.Scanning electron microscopy(SEM),X-ray diffraction(XRD)and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles.The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.展开更多
Nitrogen oxides are one of the most significant pollution sources during coal combustion. This experimental study was conducted in a 15 kWth lab-scale pressurized fluidized bed (inner diameter = 81-100 mm, H = 2100 mm...Nitrogen oxides are one of the most significant pollution sources during coal combustion. This experimental study was conducted in a 15 kWth lab-scale pressurized fluidized bed (inner diameter = 81-100 mm, H = 2100 mm) firing with bituminous coals. The effects of operating parameters, including bed temperature (800℃-900℃), operating pressure (0.1-0.4 MPa), excess air level (16%-30%) and flow pattern on NOX and N2O emissions were systematically studied during the tests. During each test the interaction effects of all the operating parameters were properly controlled. The results show that most operating parameters have an opposite effect on NOX and N2O emissions, and the N2O emissions mainly depend on the bed temperature. Increasing the operating pressure can significantly suppress the fuel-N conversion to NOX but enhance its conversion to N2O. With the rise of the excess air level and fluidization number, NOX emissions grow distinctly while N2O emissions remain almost unchanged. Total nitrogen oxide emissions increase with the bed temperature while decrease with the operating pressure.展开更多
Pilot test was made on coking plant wastewater of the Coal Chemical Corp.,Panzhihua Steel Group,China,with the biological fluidized-bed technique and A-A-O system.The results showed that when the total HTR of system w...Pilot test was made on coking plant wastewater of the Coal Chemical Corp.,Panzhihua Steel Group,China,with the biological fluidized-bed technique and A-A-O system.The results showed that when the total HTR of system was 45?h,effluent NH 3-N was 10.33?mg·L -1 ,effluent COD was less than 200?mg·L -1 ,and effluent phenol was 0.13?mg·L -1 .The operation cost is 3.60~4.36?$·(t wastewater) -1 .展开更多
基金Project supported by the National Natural Science Foundation of China (No. 90210034, 50576101,20221603)
文摘This paper presents the experimental investigations of the emissions of SO2, NO and N20 in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of the combustor is 30 kW. The setup is electrically heated during startup. The infuence of the excess air, the degree of the air staging, the biomass share and the feeding position of the fuels on the emissions of SO2, NO and N2O were studied. The results showed that an increase in the biomass shares resulted in an increase of the CO concentration in the flue gas, probably due to the high volatile content of the biomass. In co-firing, the emission of SO2 increased with increasing biomass share slightly, however, non-linear increase relationship between SO2 emission and fuel sulfur content was observed. Air staging significantly decreased the NO emission without raising the SO2 level. Although the change of the fuel feeding position from riser to downer resulted in a decrease in the NO emission level, no obvious change was observed for the SO2 level. Taking the coal feeding position R as a reference, the relative NO emission could significantly decrease during co-firing coal and biomass when feeding fuel at position D and keeping the first stage stoichiometry greater than 0.95. The possible mechanisms of the sulfur and nitrogen chemistry at these conditions were discussed and the ways of simultaneous reduction of SO2, NO and N2O were proposed.
基金Supported by the National Natural Science Foundation of China(51076154)National Key Technology Research&Development Program of 12 th Five-year of China(2011BAD15B05)
文摘Abstract:The aim of this research is to design and operate a 10 kW hot chemical-looping gasification(CLG)unit using Fe2O3/Al2O3as an oxygen carrier and saw dust as a fuel.The effect of the operation temperature on gas composition in the air reactor and the fuel reactor,and the carbon conversion of biomass to CO2and CO in the fuel reactor have been experimentally studied.A total60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina.The results show that CO and H2concentrations are increased with increasing temperature in the fuel reactor.It is also found that with increasing fuel reactor temperature,both the amount of residual char in the fuel reactor and CO2concentration of the exit gas from the air reactor are degreased.Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2production at 870℃reaches the highest rate.Scanning electron microscopy(SEM),X-ray diffraction(XRD)and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles.The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.
基金Supported by the National Key R&D Program of China(2016YFB0600802)the National Natural Science Foundation of China(51736002)
文摘Nitrogen oxides are one of the most significant pollution sources during coal combustion. This experimental study was conducted in a 15 kWth lab-scale pressurized fluidized bed (inner diameter = 81-100 mm, H = 2100 mm) firing with bituminous coals. The effects of operating parameters, including bed temperature (800℃-900℃), operating pressure (0.1-0.4 MPa), excess air level (16%-30%) and flow pattern on NOX and N2O emissions were systematically studied during the tests. During each test the interaction effects of all the operating parameters were properly controlled. The results show that most operating parameters have an opposite effect on NOX and N2O emissions, and the N2O emissions mainly depend on the bed temperature. Increasing the operating pressure can significantly suppress the fuel-N conversion to NOX but enhance its conversion to N2O. With the rise of the excess air level and fluidization number, NOX emissions grow distinctly while N2O emissions remain almost unchanged. Total nitrogen oxide emissions increase with the bed temperature while decrease with the operating pressure.
文摘Pilot test was made on coking plant wastewater of the Coal Chemical Corp.,Panzhihua Steel Group,China,with the biological fluidized-bed technique and A-A-O system.The results showed that when the total HTR of system was 45?h,effluent NH 3-N was 10.33?mg·L -1 ,effluent COD was less than 200?mg·L -1 ,and effluent phenol was 0.13?mg·L -1 .The operation cost is 3.60~4.36?$·(t wastewater) -1 .