In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus ...In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus with a range of 67.7% to 89.9% and an average value of 78.0. The effluent of phosphorus met the national discharge standard. The removal of TN was effected by both BOD variation of influent and wastewater temperature. TN removal was in the range of 28.5% to 55.8% with an average value of 39.4%. The energy cost was 0.15 kWh(m3d)-1 or 1.35 kWh(kgBOD@d)-1. The annual average sludge production was 46.3 m3d-1, the annual average dosage for the dewatering was 40 kg d-1 .展开更多
The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerob...The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerobic (A^2/O) bioreactors, developed on the basis of an expended granular sludge blanket (EGSB), granular sequencing batch reactor (GSBR) and intermittent cycle extended aeration system (ICEAS). Leachate was subjected to stripping by agitation process and poly ferric sulfate coagulation as a pretreatment process, in order to reduce both ammonia toxicity to microorganisms and the organic contents. The reactor was operated under three different operating systems, consisting of recycling sludge with air (A^2/O), recycling sludge without air (low oxygen) and a combination of both (A^2/O and low oxygen). The lowest effluent nutrient levels were realised by the combined system of A^2/O and low oxygen, which resulted in effluent of chemical oxygen demand (COD), NH3-N and biological oxygen demand (BOD5) concentrations of 98.20, 13.50 and 22.50 mg/L. The optimal operating conditions for the efficient removal of biological nutrient using the ICUSB reactor were examined to evaluate the influence of the parameters on its performance. The results showed that average removal efflciencies of COD and NH3- N of 96.49% and 99.39%, respectively were achieved under the condition of a hydraulic retention time of 12 hr, including 4 hr of pumping air into the reactor, with dissolved oxygen at an rate of 4 mg/L and an upflow velocity 2 m/hr. These combined processes were successfully employed and effectively decreased pollutant loading.展开更多
The aluminum ions generated from mining aluminum,electrolytic aluminum and the industrial production of aluminum-based coagulants(such as AlCl3 and Al2(SO4)3)enter sewage treatment plants and interact with activated s...The aluminum ions generated from mining aluminum,electrolytic aluminum and the industrial production of aluminum-based coagulants(such as AlCl3 and Al2(SO4)3)enter sewage treatment plants and interact with activated sludges.An anaerobic/anoxic/oxic(A2^O)process was used to reveal the effects of Al^3+on the pollutant removal efficiencies,bioflocculation and the micro structure of sludge.The results showed that a low concentration of Al^3+improved the pollutant removal efficiencies and increased the sludge particle size.However,a high concentration of Al^3+hindered microbial flocculation and reduced the pollutant removal efficiencies.With a 10 mg/L Al^3+addition,the chemical oxygen demand(COD),total nitrogen(TN)and NH4+-N increased by 3%,16%and 27%,and reached as high as 68%,60%and 87%,respectively.At the same time,the dehydrogenase activity,flocculation ability(FA)and contact angle of the sludge reached their maximum levels at 41.3 mg/L/hr,45%and 79.63°,respectively.The specific surface area of the sludge decreased to 7.084 m2/g and the sludge pore size distribution shifted to concentrate in the me soporous range.Most of Al^3+was adsorbed on the surface of sludge,changing the physicochemical properties and physical structure of the sludge.展开更多
The anaerobic-anoxic oxidation ditch(A^(2)/O OD)process is popularly used to eliminate nutrients from domestic wastewater.In order to identify the existence of denitrifying phosphorus removing bacteria(DPB),evaluate t...The anaerobic-anoxic oxidation ditch(A^(2)/O OD)process is popularly used to eliminate nutrients from domestic wastewater.In order to identify the existence of denitrifying phosphorus removing bacteria(DPB),evaluate the contribution of DPB to biological nutrient removal,and enhance the denitrifying phosphorus removal in the A^(2)/O OD process,a pilot-scale A^(2)/O OD plant(375 L)was conducted.At the same time batch tests using sequence batch reactors(12 L and 4 L)were operated to reveal the significance of anoxic phosphorus removal.The results indicated that:The average removal efficiency of COD,NH^(+)_(4),PO^(3–)_(4),and TN were 88.2%,92.6%,87.8%,and 73.1%,respectively,when the steady state of the pilotscale A^(2)/O OD plant was reached during 31–73 d,demonstrating a good denitrifying phosphorus removal performance.Phosphorus uptake took place in the anoxic zone by poly-phosphorus accumulating organisms NO^(-)_(2) could be used as electron receptors in denitrifying phosphorus removal,and the phosphorus uptake rate with NO^(-)_(2) as the electron receptor was higher than that with NO^(–)_(3) when the initial concentration of either NO^(-)_(2) or NO^(–)_(3) was 40 mg/L.展开更多
文摘In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus with a range of 67.7% to 89.9% and an average value of 78.0. The effluent of phosphorus met the national discharge standard. The removal of TN was effected by both BOD variation of influent and wastewater temperature. TN removal was in the range of 28.5% to 55.8% with an average value of 39.4%. The energy cost was 0.15 kWh(m3d)-1 or 1.35 kWh(kgBOD@d)-1. The annual average sludge production was 46.3 m3d-1, the annual average dosage for the dewatering was 40 kg d-1 .
基金supported by the Hubei Provincial Science and Technology Department(No.2006AA305A05)the China Scholarship Council (CSC)China University of Geosciences (CUG) for the financial support of this research
文摘The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerobic (A^2/O) bioreactors, developed on the basis of an expended granular sludge blanket (EGSB), granular sequencing batch reactor (GSBR) and intermittent cycle extended aeration system (ICEAS). Leachate was subjected to stripping by agitation process and poly ferric sulfate coagulation as a pretreatment process, in order to reduce both ammonia toxicity to microorganisms and the organic contents. The reactor was operated under three different operating systems, consisting of recycling sludge with air (A^2/O), recycling sludge without air (low oxygen) and a combination of both (A^2/O and low oxygen). The lowest effluent nutrient levels were realised by the combined system of A^2/O and low oxygen, which resulted in effluent of chemical oxygen demand (COD), NH3-N and biological oxygen demand (BOD5) concentrations of 98.20, 13.50 and 22.50 mg/L. The optimal operating conditions for the efficient removal of biological nutrient using the ICUSB reactor were examined to evaluate the influence of the parameters on its performance. The results showed that average removal efflciencies of COD and NH3- N of 96.49% and 99.39%, respectively were achieved under the condition of a hydraulic retention time of 12 hr, including 4 hr of pumping air into the reactor, with dissolved oxygen at an rate of 4 mg/L and an upflow velocity 2 m/hr. These combined processes were successfully employed and effectively decreased pollutant loading.
基金supported by the National Natural Science Foundation of China(Nos.51678119 and 51808254)the Department of Science and Technology of Jilin Province(Nos.20180201016SF and 20180101079JC)
文摘The aluminum ions generated from mining aluminum,electrolytic aluminum and the industrial production of aluminum-based coagulants(such as AlCl3 and Al2(SO4)3)enter sewage treatment plants and interact with activated sludges.An anaerobic/anoxic/oxic(A2^O)process was used to reveal the effects of Al^3+on the pollutant removal efficiencies,bioflocculation and the micro structure of sludge.The results showed that a low concentration of Al^3+improved the pollutant removal efficiencies and increased the sludge particle size.However,a high concentration of Al^3+hindered microbial flocculation and reduced the pollutant removal efficiencies.With a 10 mg/L Al^3+addition,the chemical oxygen demand(COD),total nitrogen(TN)and NH4+-N increased by 3%,16%and 27%,and reached as high as 68%,60%and 87%,respectively.At the same time,the dehydrogenase activity,flocculation ability(FA)and contact angle of the sludge reached their maximum levels at 41.3 mg/L/hr,45%and 79.63°,respectively.The specific surface area of the sludge decreased to 7.084 m2/g and the sludge pore size distribution shifted to concentrate in the me soporous range.Most of Al^3+was adsorbed on the surface of sludge,changing the physicochemical properties and physical structure of the sludge.
基金This work was supported by the National Natural Science Foundation of China—the Abroad Young Scholar Foundation(Grant No.50628808)the National Key Technologies Research and Development Program of China during the 11th Five-year Plan Period(Grant No.2006BAC19B02).
文摘The anaerobic-anoxic oxidation ditch(A^(2)/O OD)process is popularly used to eliminate nutrients from domestic wastewater.In order to identify the existence of denitrifying phosphorus removing bacteria(DPB),evaluate the contribution of DPB to biological nutrient removal,and enhance the denitrifying phosphorus removal in the A^(2)/O OD process,a pilot-scale A^(2)/O OD plant(375 L)was conducted.At the same time batch tests using sequence batch reactors(12 L and 4 L)were operated to reveal the significance of anoxic phosphorus removal.The results indicated that:The average removal efficiency of COD,NH^(+)_(4),PO^(3–)_(4),and TN were 88.2%,92.6%,87.8%,and 73.1%,respectively,when the steady state of the pilotscale A^(2)/O OD plant was reached during 31–73 d,demonstrating a good denitrifying phosphorus removal performance.Phosphorus uptake took place in the anoxic zone by poly-phosphorus accumulating organisms NO^(-)_(2) could be used as electron receptors in denitrifying phosphorus removal,and the phosphorus uptake rate with NO^(-)_(2) as the electron receptor was higher than that with NO^(–)_(3) when the initial concentration of either NO^(-)_(2) or NO^(–)_(3) was 40 mg/L.