期刊文献+
共找到257,210篇文章
< 1 2 250 >
每页显示 20 50 100
Geochronology and Geochemistry of the Xingxingxia Triassic A-type Granites in Central Tianshan,NW China:Petrogenesis and Tectonic Implications
1
作者 HUANG Zengbao LI Xiyao +1 位作者 ZHAO Hao LU Qing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期337-351,共15页
The Triassic granitoids in Central Tianshan play a key role in determining the petrogenesis and tectonic evolution on the southern margin of the Central Asian orogenic belt.In this study,we present SHRIMP zircon U-Pb ... The Triassic granitoids in Central Tianshan play a key role in determining the petrogenesis and tectonic evolution on the southern margin of the Central Asian orogenic belt.In this study,we present SHRIMP zircon U-Pb ages,Hf isotopic and geochemical data on the Xingxingxia biotite granite,amazonite granite and granitic pegmatite in Central Tianshan,NW China.Zircon U-Pb dating yielded formation ages of 242 Ma for the biotite granite and 240 Ma for the amazonite granite.These granitoid rocks have high K_(2)O with low MgO and CaO contents.They are enriched in Nb,Ta,Hf and Y,while being depleted in Ba and Sr,showing flat HREE patterns and negative Eu anomalies.They have typical A-type granite geochemical signatures with high Ga/A_(1)(8–13)and TFeO/(TFeO+MgO)ratios,showing an A_(2) affinity for biotite granite and an A_(1) affinity for amazonite granite and granitic pegmatite.Zircon ε_(Hf)(t)values of the granitoids are 0.45–2.66,with Hf model ages of 0.99–1.17 Ga.This suggests that these A-type granites originated from partial melting of the lower crust.We propose that Xingxingxia Triassic A-type granites formed under lithospheric extension from post-orogenic to anorogenic intraplate settings and NE-trending regional strike-slip fault-controlled magma emplacement in the upper crust. 展开更多
关键词 TRIASSIC A-type granite Xingxingxia Central Tianshan Central Asian orogenic belt
下载PDF
Geochemistry, zircon U–Pb geochronology, and Hf isotopes of S-type granite in the Baoshan block, constraints on the age and evolution of the Proto-Tethys
2
作者 Jianjun Zhang Chuanlong Mou +3 位作者 Chendong Liu Yong Zhang Ting Chen Hualiang Li 《Acta Geochimica》 EI CAS CSCD 2024年第1期40-58,共19页
Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkali... Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge. 展开更多
关键词 Baoshan block Early Paleozoic granite GEOCHEMISTRY ZIRCON GEOCHRONOLOGY Hf isotope
下载PDF
A coupled thermo-mechanical peridynamic model for fracture behavior of granite subjected to heating and water-cooling processes 被引量:1
3
作者 Luming Zhou Zhende Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2006-2018,共13页
Thermal damage and thermal fracture of rocks are two important indicators in geothermal mining projects.This paper investigates the effects of heating and water-cooling on granite specimens at various temperatures.The... Thermal damage and thermal fracture of rocks are two important indicators in geothermal mining projects.This paper investigates the effects of heating and water-cooling on granite specimens at various temperatures.The laboratory uniaxial compression experiments were also conducted.Then,a coupled thermo-mechanical ordinary state-based peridynamic(OSB-PD)model and corresponding numerical scheme were developed to simulate the damage of rocks after the heating and cooling processes,and the change of crack evolution process was predicted.The results demonstrate that elevated heating temperatures exacerbate the thermal damage to the specimens,resulting in a decrease in peak strength and an increase in ductility of granite.The escalating occurrence of thermal-induced cracks significantly affects the crack evolution process during the loading phase.The numerical results accurately reproduce the damage and fracture characteristics of the granite under different final heating temperatures(FHTs),which are consistent with the test results in terms of strength,crack evolution process,and failure mode. 展开更多
关键词 Peridynamics(PD) granite Heating and cooling Damage and fracture Uniaxial compression
下载PDF
Numerical simulation of microwave-induced cracking and melting of granite based on mineral microscopic models
4
作者 Xiaoli Su Diyuan Li +3 位作者 Junjie Zhao Mimi Wang Xing Su Aohui Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1512-1524,共13页
This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the... This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the rationality of the proposed model.Embedding microscopic mineral sections into the granite model for simulation shows that uneven temperature gradients create distinct molten,porous,and nonmolten zones on the fracture surface.Moreover,the varying thermal expansion coefficients and Young's moduli among the minerals induce significant thermal stress at the mineral boundaries.Quartz and biotite with higher thermal expansion coefficients are subjected to compression,whereas plagioclase with smaller coefficients experiences tensile stress.In the molten zone,quartz undergoes transgranular cracking due to theα–βphase transition.The local high temperatures also induce melting phase transitions in biotite and feldspar.This numerical study provides new insights into the distribution of thermal stress and mineral phase changes in rocks under microwave irradiation. 展开更多
关键词 MICROWAVE numerical modeling microcracking phase change granite
下载PDF
U-Pb zircon ages and petrogeochemistry and tectonic implications of gabbro and granite in southwest Lahad Datu area of Sabah, Malaysia
5
作者 Zhigang Zhao Wu Tang +3 位作者 Shixiang Liu Huafeng Tang Pujun Wang Zhiwen Tian 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期94-110,共17页
The southwest Lahad Datu felsic rocks were previously thought to have formed in the late Triassic as part of the microcontinental crystalline basement.Based on U-Pb ages,geochemistry,and the Hfisotopes of zircon from ... The southwest Lahad Datu felsic rocks were previously thought to have formed in the late Triassic as part of the microcontinental crystalline basement.Based on U-Pb ages,geochemistry,and the Hfisotopes of zircon from the southeastern Sabah gabbro and granite,in this study,the tectonic properties of the Sabah area during the Triassic were investigated.The weighted average U-Pb zircon ages of the gabbro and granite samples were determined to be(230.9±2.5)Ma and(207.1±3.3)Ma,respectively.The granite had SiO_(2) contents of 66.54%-79.47%,low TiO_(2) contents of 0.08%-0.3%,Al_(2)O_(3) contents of 10.97%-16.22%,Na_(2)O contents of 5.91 %-6.39%,and low K_(2)O contents of 0.15%-0.65%.The chondrite-normalized rare earth element(REE) patterns exhibit light REE enrichment,with right-sloping curves.The primitive mantle-normalized trace element spider diagrams exhibit Th,U,La,Sr,and Zr enrichment and Nb,Ta,P and Ti depletions,i.e.,the geochemical characteristics of typical island arc igneous rocks.The tectonic discriminant diagram indicates that the granite is a volcanic arc granite.The Hf isotopic an alysis of gabbro zircon revealed that the zircons have ε_(Hf)(t)values of 12.08-16.24(mean of 14.32) and two-stage model ages(t_(DM2)) of 223-491 Ma(mean of 347 Ma).This indicates that the diagenetic magma of the gabbro was mainly derived from melting of newly formed crustal materials.The ophiolite in southeast Sabah has existed since the early Late Triassic.The crystalline basement granite in southeastern S abah was emplaced lasted from late Triassic to early Cretaceous.Based on previous studies and global plate reconstruction models,it is speculated that the southeastern Sabah granite may have been formed in an island arc setting,i.e.,where the oceanic crust of the Paleo-Tethys Ocean collided with the oceanic crust of the Panthalassa Ocean. 展开更多
关键词 SABAH early late Triassic OPHIOLITE granite tectonic properties
下载PDF
Petrogenesis and Tectonic Significance of Shenxianshui Alkaline Granite in Gejiu,Yunnan Province,China
6
作者 YANG Rong CHEN Yongqing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期368-385,共18页
The Shenxianshui granites in the western Gejiu area were formed in the Late Cretaceous.Laser ablation inductively coupled plasma mass spectrometry indicates zircon U-Pb ages ranging from 90.67±0.7 to 85.97±0... The Shenxianshui granites in the western Gejiu area were formed in the Late Cretaceous.Laser ablation inductively coupled plasma mass spectrometry indicates zircon U-Pb ages ranging from 90.67±0.7 to 85.97±0.6 Ma.The intrusive rocks are peraluminous(A/CNK=1.03 to 1.33)and calc-alkaline,showing an affinity towards I-type granite.Large ion lithophilic elements are enriched in K and Rb,while high field strength elements are depleted.Moreover,light rare earth elements are significantly enriched,showing a slight negative Eu anomaly(Eu/Eu^(*)=0.39 to 0.58).Shenxianshui granite has a relatively high initial Sr isotope ratio(^(87)Sr/^(86)Sr)_(i)(0.7098-0.7105),negative ε_(Nd)(t)values(−7.99 to−7.44)and negative ε_(Hf)(t)values(−8.37 to−2.58).Combined with previous studies,these characteristics suggest that the Shenxianshui alkaline granites were formed in a post-collision extensional environment.The alkaline granitic magma possibly originated from the partial melting of the lower crust during the Mesoproterozoic era and may have contained mantle source materials.Shenxianshui alkaline granite was formed from mixed magma with a high degree of crystal differentiation.The abundance of ore-forming elements indicates that Shenxianshui granite has the potential to mineralize key metals and rare earth elements. 展开更多
关键词 I-type granite zircon U-Pb geochronology Sr-Nd-Pb isotopes Hf isotope Gejiu
下载PDF
Mechanical properties and energy evolution of Beishan shallow-layer granite under different unloading paths
7
作者 WANG Chuanle LI Erbing +4 位作者 ZHANG Dengke HAN Yang LU Hui HE Kang DU Guangyin 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1728-1744,共17页
Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characte... Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characteristics, and strain energy evolution of the Beishan shallow-layer granite used in triaxial unloading tests were investigated in this study. Three groups of triaxial tests, namely, conventional triaxial compression test(Group Ⅰ), maintaining deviatoric stress synchronously unloading confining pressure test(Group Ⅱ), and loading axial pressure synchronously unloading confining pressure test(Group Ⅲ), were carried out for the cylindrical granite specimens. AE monitoring device was utilized in these tests to determine the degree to which the AE waves and AE events reflected the degree of rock damage. In addition, the crack stress thresholds of the specimens were determined by volumetric strain method and AE parameter method, and strain energy evolution of the rock was explored in different damage stages. The results show that the shallow-layer granite experiences brittle failure during the triaxial loading test and unloading test, and the rock has a greater damage degree during the unloading test. The crack stress thresholds of these samples vary greatly between tests, but the threshold ratios of all samples are similar in the same crack damage stage. The Mogi-Coulomb strength criterion can better describe the unloading failure strength of the rock. The evolution of the AE parameter characteristics and strain energy differs between the specimens used in different stress path tests. The dissipative strain energy is the largest in Group Ⅱ and the smallest in Group Ⅰ. 展开更多
关键词 Beishan granite Unloading test Mechanical properties Damage mechanism Acoustic emission Strain energy
下载PDF
Effects of soil crust on the collapsing erosion of colluvial deposits with granite residual soil
8
作者 LIU Weiping ZENG Bohan +1 位作者 WANG Tianhuan DUAN Junyi 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2579-2591,共13页
Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion vo... Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion volumes.However,the impacts of soil crust conditions on the erosion of colluvial deposits with granite residual soils have only been studied to a limited extent.To address this issue,this study investigates the impacts of three soil crust conditions(i.e.,without crust,10-minute crust,and 20-minute crust)on gully morphology,rainfall infiltration,and runoff and sediment yield during slope erosion of colluvial deposits with granite residues(classified as Acrisols)in Yudu County,Ganzhou City,Jiangxi Province,China,using simulated rainfall tests and photographic methods.The results showed that as the strength of the soil crust increased,the capacity of moisture infiltration and the width and depth of the gully as well as the sediment concentration and yield ratio decreased;at the same time,the runoff ratio increased.The sediment yield in the without-crust test was found to be 1.24 and 1.43 times higher than that observed in the 10-minute crust and 20-minute crust tests,respectively.These results indicate that soil crusts can effectively prevent slope erosion and moisture infiltration,while providing valuable insights for the management of soil erosion in natural environments. 展开更多
关键词 granite residual soil Colluvial deposits Slope erosion Soil crust Sediment yield
下载PDF
Mechanical properties and fracture surface roughness of thermally damaged granite under dynamic splitting
9
作者 Yijin Qian Peng Jia +1 位作者 Songze Mao Jialiang Lu 《Deep Underground Science and Engineering》 2024年第1期103-116,共14页
In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samp... In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samples after thermal treatment at 25,200,400,and 600℃.Results show that the dynamic peak splitting strength of thermally damaged granite samples increases with increasing strain rate,showing obvious strain‐rate sensitivity.With increasing temperature,thermally induced cracks in granite transform from intergranular cracks to intragranular cracks,and to a transgranular crack network.Thermally induced damages reduce the dynamic peak splitting strength and the maximum absorbed energy while increasing the peak radial strain.The fracture mode of the thermally damaged granite under dynamic loads is mode Ⅱ splitting failure.By using the axial roughness index Z2 a,the distribution ranges of the wedge‐shaped failure zones and the tensile failure zones in the fracture surfaces under dynamic Brazilian splitting can be effectively identified.The radial roughness index Z_(2)^(r)is sensitive to the strain rate and temperature.It shows a linear correlation with the peak splitting strength and the maximum absorbed energy and a linear negative correlation with the peak radial strain.Z_(2)^(r)can be used to quantitatively estimate the dynamic parameters based on the models proposed. 展开更多
关键词 dynamic splitting fracture surface roughness granite strain rate thermal treatment
下载PDF
Geochronology,Petrogenesis and Tectonic Setting of the Late Jurassic I-type Granites in the North Qinling Orogenic Belt,Central China 被引量:2
10
作者 HUANG Yanna LI Dunpeng +1 位作者 XIAO Aifang XU Songming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第4期1132-1149,共18页
The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before enter... The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before entering intra-continental orogeny in the Late Triassic.The Meso-Cenozoic intra-continental orogeny and tectonic evolution had different responses in various terranes of the belt,with the tectonic evolution of the middle part of the belt being particularly controversial.The granites distributed in the Dayu and Kuyu areas in the middle part of the NQOB can provide an important window for revealing the geodynamic mechanisms of the NQOB.The main lithology of Dayu and Kuyu granites is biotite monzogranite,and the zircon U-Pb dating yielded intrusive ages of 151.3±3.4 Ma and 147.7±1.5 Ma,respectively.The dates suggest that the biotite monzogranite were formed at the end of the Late Jurassic.The whole-rock geochemistry analysis shows that the granites in the study areas are characterized by slightly high SiO_(2)(64.50-68.88 wt%)and high Al_(2)O_(3)(15.12-16.24 wt%)and Na_(2)O(3.55-3.80 wt%)contents.They are also enriched in light rare earth elements,large ion lithophile elements(e.g.,Ba,K,La,Pb and Sr),and depleted in high field strength elements(HFSEs)(e.g.,Ta,Nb,P and Ti).Additionally,the granites have weakly negative-slightly positive Eu anomalies(δEu=0.91-1.19).Zircon Lu-Hf isotopic analysis showedε_(Hf)(t)=-6.1--3.8,and the two-stage model age is T_(2DM(crust))=1.5-1.6 Ga.The granites in the study areas are analyzed as weak peraluminous high-K calc-alkaline I-type granites.They formed by partial melting of the thickened ancient lower crust,accompanied by the addition of minor mantle-derived materials.During magma ascent,they experienced fractional crystallization,with residual garnet and amphibole for a certain proportion in the magma source region.Comprehensive the geotectonic data suggest that the end of the Late Jurassic granite magmatism in the Dayu and Kuyu areas represents a compression-extension transition regime.It may have been a response to multiple tectonic mechanisms,such as the late Mesozoic intra-continental southward subduction of the North China Craton and the remote effect of the Paleo-Pacific Plate subduction. 展开更多
关键词 partial melting tectonic transition I-type granite Late Jurassic North Qinling Orogenic Belt
下载PDF
Petrogenesis and Tectonic Implications of the Early Triassic Nianzi Adakitic Granite Unit in the Yanshan Fold and Thrust Belt:New Constraints from U-Pb Geochronology and Sr-Nd-Hf Isotopes
11
作者 ZHANG Huijun WU Chu +5 位作者 HE Fubing WANG Biren CUI Yubin LIU Zhenghua YOU Shina DONG Jing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期50-66,共17页
The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thru... The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic. 展开更多
关键词 tectonic evolution zircon geochronology Sr-Nd-Hf isotopes Nianzi granite unit Yanshan fold and thrust belt
下载PDF
Unconfined compressive strength and failure behaviour of completely weathered granite from a fault zone
12
作者 DU Shaohua MA Jinyin +1 位作者 MA Liyao ZHAO Yaqian 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2140-2158,共19页
Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests... Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition. 展开更多
关键词 Fault fracture zone Completely weathered granite(CWG) Unconfined compression strength(UCS) Multiple nonlinear regression model
下载PDF
Spatial-temporal distribution and geochemistry of highly evolved Mesozoic granites in Great Xing’an Range,NE China:Discriminant criteria and geological significance
13
作者 WU Haoran YANG Hao +4 位作者 GE Wenchun JI Zheng DONG Yu JING Yan JING Jiahao 《Global Geology》 2024年第1期20-34,共15页
Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental... Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate. 展开更多
关键词 highly evolved granite Great Xing’an Range spatial-temporal distribution extensional environment
下载PDF
Peraluminous A-type granites formed through synchronous fractionation,magma mixing,mingling,and undercooling:evidence from microgranular enclaves and host Mesoproterozoic Kanigiri granite pluton,Nellore Schist Belt,southeast India
14
作者 Ch.Narshimha Santosh Kumar 《Acta Geochimica》 EI CAS CSCD 2023年第4期603-636,共34页
The field and microstructural features coupled with mineral chemical data from microgranular enclave(ME)and host Mesoproterozoic Kanigiri granite(KG)pluton of Nellore Schist Belt(NSB),Southeastern India,have been docu... The field and microstructural features coupled with mineral chemical data from microgranular enclave(ME)and host Mesoproterozoic Kanigiri granite(KG)pluton of Nellore Schist Belt(NSB),Southeastern India,have been documented in order to infer the likely processes responsible for the origin and evolution of ME and host KG magma.The ME and host KG bear the same mineral assemblages barring the KG which does not contain amphibole;however,they are modally disequilibrated.The ME in KG is originated due to multiple intrusions of ME magmas into the crystallizing host KG magma chamber.Field and textural features indicate the dynamic magma flow,mingling,and undercooling of the ME against a relatively cooler surface of host KG magma.The presence of NSB country rock xenoliths and its diffuse boundaries suggest the intrusive relation and marginal assimilation by the intruding KG magma.The occasional cumulate texture in the ME appears to have formed by the accumulation of early-formed minerals that crystallized rapidly in the ME magma globules.The ME shows the magmatically deform features developed due to the flowage and erosion by the subsequent intrusions of ME magma pulses into the crystallizing host KG magma chamber.The ME amphiboles show unusual composition as ferro-edenitic hornblende to potassian-hastingsitic hornblende,that crystallized in the subalkaline-alkaline transition,low fO_(2)(reducing to mildly oxidizing)magma.The unusual extremely low Mg/Mg+Fe^(t)=0.015(avg.)of ME amphiboles may be related to the changing physico-chemical(P,T,fO_(2),and H_(2)O)condition of the ME magma or they might have crystallized in equilibrium with more evolved KG magma.The KG(FeOt/MgO=37.04,avg.)and ME(FeO~t/MgO=77.72,avg.)biotites are siderophyllite,and buffered between QFM and NNO syn-crystallizing in the water undersaturated(H_(2O)≈3.58 wt.%in KG;≈3.53wt.%in ME),alkaline anorogenic(A-type)host magmas that were emplaced at mid-crustal(4–5 kbar;17 km)depth.Field,microtextural and mineral chemical evidences suggest that the alkaline KG magma originated from crustal source and evolved through synchronous fractionation,mixing,and mingling with coeval ME magmas in the KG magma chamber. 展开更多
关键词 Enclave Kanigiri granite Magma mixing-fractionation Nellore schist belt SE India
下载PDF
Geochronology and Geochemistry of Early Cretaceous A-type Granites in Central-Eastern Inner Mongolia,China:Implications for Late Mesozoic Tectonic Evolution of the Southern Great Xing'an Range
15
作者 ZHANG Yanwen ZHANG Xiaofei +6 位作者 CHEN Lixin PANG Zhenshan CHEN Hui XUE Jianling ZHOU Yi TENG Chao CHEN Guochao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第4期1094-1111,共18页
The southern Great Xing'an Range is the most critical Sn-polymetallic metallogenic belt in northeast China.However,the tectonic setting of the Early Cretaceous magmatic-metallogenic”flare-up“event remains uncert... The southern Great Xing'an Range is the most critical Sn-polymetallic metallogenic belt in northeast China.However,the tectonic setting of the Early Cretaceous magmatic-metallogenic”flare-up“event remains uncertain.This paper presents an integrated study on the occurrence,petrology,zircon U-Pb ages,whole-rock geochemistry,and in situ zircon Hf isotopes for Wenduerchagan granites of Xi Ujimqin Banner,central-eastern Inner Mongolia.These granites consist primarily of granite porphyry(with ages of 137±1 Ma and 138±1 Ma)and(porphyritic)alkali feldspar granite(with an age of 141±2 Ma),corresponding to the early Early Cretaceous.They are A-type granites characterized by high silicon,alkali,and TFeO/MgO contents while being depleted of Ba,Nb,Ta,Sr,P,and Ti.They show right-dipping trend rare-earth element distribution characteristics with negative Eu anomalies(Eu/Eu^(*)=0.01-0.20)and weak heavy rare-earth element fractionation((Gd/Yb)_(N)=0.77-2.30).They demonstrate homogeneous zircon Hf isotopic compositions(positiveε_(Hf)(t)values from+5.3 to+7.1 and young two-stage Hf model ages of 851-742 Ma)and high zircon saturation temperatures(av.810℃).These geochemical characteristics indicate that Wenduerchagan granites originated from the partial melting of juvenile crust under high-temperature and low-pressure conditions.Wenduerchagan granites most likely formed in a post-collisional compression-extension transition regime caused by the closure of the Mongol-Okhotsk Ocean,when combined with regional geology.Such a transition regime can probably be attributed to the upwelling of the asthenospheric mantle caused by the break-off of a subducted Mongol-Okhotsk oceanic slab.Upwelling asthenospheric mantle provided sufficient energy and favorable tectonic conditions for magmatism and mineralization of the Early Cretaceous. 展开更多
关键词 magmatism and mineralization A-type granite post-collisional environment Early Cretaceous southern Great Xing'an Range Mongol-Okhotsk Ocean
下载PDF
Factors controlling the distribution of granite reservoirs of hydrothermal system type in South China:A case study of Huangshadong geothermal field in Yuezhong Depression,China
16
作者 Jianyun Feng 《Energy Geoscience》 2023年第4期149-158,共10页
The granitoids widely distributed in South China are characterized by multi-stage evolution via episodic intrusions,in a complex geodynamic setting.Since granites have high radioactive heat generation and excellent th... The granitoids widely distributed in South China are characterized by multi-stage evolution via episodic intrusions,in a complex geodynamic setting.Since granites have high radioactive heat generation and excellent thermal conductivity,a deep moderate-to high-temperature geothermal system can be formed in the presence of high-quality,fissured granite geothermal reservoirs and thermal insulation with appropriate cap rocks.The key to exploring deep geothermal resources is to identify high-quality fissured granite geothermal reservoirs of a certain scale in a thermal anomaly zone with high background heatflow values.To determine the controlling effects of the distribution and development characteristics of granite geothermal reservoirs on the generation and enrichment of deep geothermal resources,this study analyzed the characteristics of the geothermal reservoirs in the Huangshadong geothermal field in the Yuezhong Depression,Guangdong Province,and their controlling effects on the formation of geothermal resources.The results are as follows.The hydrothermal system in the Huangshadong geothermal field mainly distributed in the contact zones between magmatic plutons and surrounding rocks,is significantly controlled by faults,followed by neoid volcanic apparatus and magmatic activities.That is,the geothermal system therein is under joint control of structures and magmas.Moreover,fractured zones of neoid transtensional faults conduct the geothermal water in the hydrothermal system and control its shallow discharge.Therefore,the hydrothermal system in the study area is characterized by the control of transpressional tectonic zone and volcanic apparatus,and geothermal water conduction through fractured zones of transtensional faults. 展开更多
关键词 South China Yuezhong depression granite geothermal reservoir Huangshadong geothermal field Geothermal system
下载PDF
Geochemical studies of hybrid granite from Madugulapalli area, Eastern Dharwar Craton, Southern India: Implications for crustal mixing 被引量:1
17
作者 Nagamma J Ratnakar J +1 位作者 Ajay kumar A Ashok Ch 《Acta Geochimica》 EI CAS CSCD 2023年第1期9-23,共15页
Magma produced by melting of continental crust and mantle at the Archean-Proterozoic boundary are compositionally variable and chemical compositions provide evidence for the mixing of two sources. Understanding the co... Magma produced by melting of continental crust and mantle at the Archean-Proterozoic boundary are compositionally variable and chemical compositions provide evidence for the mixing of two sources. Understanding the composition of hybrid magma is essential for determining the comparative infl uence of crust and mantle sources during orogenesis. The hybrid granites are less documented in Indian cratons, especially less in Dharwar Craton. Here we present petrographic and whole-rock geochemical data of Madgulapalli granitic rocks situated in the NE part of the Eastern Dharwar Craton(EDC), to elucidate their petrogenesis and role in crust formation. The Madugulapalli granites(MPG) are composed chiefl y of plagioclase, quartz, and alkali feldspar with associated biotite showing alteration and inter-granular textures. Geochemically, they are metaluminous to peraluminous in nature with calc-alkaline hybrid granite. The hybrid granites exhibit both negative and positive europium anomalies;the lower Rb/Sr, Rb, Sr, and higher Sr/Y,(Dy/Yb)N ratios suggest that the interaction of older rocks with residual garnet source melted at high pressures. We hypothesize that hybrid granites are formed by interaction(e.g., metasomatism, mingling, or mixing) between parental magmas and pre-existing rocks with the infl uence of sanukitoid melts(heat source) in a subduction environment. The genesis of the hybrid granites demonstrates the mixing coupled with diff erentiation in the petrogeny’s residue system in a syn-collision setting followed by continental crust stability in EDC during the Neoarchean period. 展开更多
关键词 Madugulapalli granite Hybrid granite Crustal mixing SUBDUCTION
下载PDF
Correlations between mineral composition and mechanical properties of granite using digital image processing and discrete element method 被引量:2
18
作者 Changdi He Brijes Mishra +3 位作者 Qingwen Shi Yun Zhao Dajun Lin Xiao Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期949-962,共14页
This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(... This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests. 展开更多
关键词 granite Digital image processing Discrete element method Mineral composition Mechanical properties
下载PDF
Petrogenesis of Late Cretaceous Jiangla'angzong I-Type Granite in Central Lhasa Terrane, Tibet, China: Constraints from Whole-Rock Geochemistry, Zircon U-Pb Geochronology, and Sr-Nd-Pb-Hf Isotopes 被引量:24
19
作者 LIU Hong LI Guangming +7 位作者 HUANG Hanxiao CAO Huawen YUAN Qian LI Yingxu OUYANG Yuan LAN Shuangshuang LU Menghong YAN Guoqiang 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第4期1396-1414,共19页
The Jiangla'angzong granite in the northern part of the Central Lhasa Terrane is composed of syenogranite and adamellite. LA-ICP-MS zircon U-Pb analyses suggest that syenogranite has a weighted mean 2±6pb/23SU a... The Jiangla'angzong granite in the northern part of the Central Lhasa Terrane is composed of syenogranite and adamellite. LA-ICP-MS zircon U-Pb analyses suggest that syenogranite has a weighted mean 2±6pb/23SU age of 86±1 Ma (mean square weighted deviation=0.37), which is in accordance with the muscovite Ar-Ar age (85±1 Ma) of Cu-Au ore-bearing skarns and the zircon U-Pb age (84±1 Ma) of adamellite. This suggests that the Jiangla'angzong magmatism and Cu-Au mineralization events took place during the Late Cretaceous. The granite contains hornblende, biotite, and pyroxene, and does not contain Al-bearing minerals, such as muscovite, cordierite, and garnet. It has high contents of SiO2 (65.10 -70.91wt%), K20 (3.44-5.17wt%), and total K20+Na20 (7.13-8.15wt%), and moderate contents of A12Oa (14.14-16.45wt%) and CaO (2.33-4.11wt%), with a Reitman index (δ43) of 2.18 to 2.33, and A/ CNK values of 0.88 to 1.02. The P205 contents show a negative correlation with SiO2, whereas Pb contents show a positive correlation with SiO2. Th and Y contents are relatively low and show a negative correlation with the Rb contents. These characteristics suggest that the Jiangla'angzong granite is a high K calc-alkaline metaluminous I-type granite. It is enriched in light rare earth elements (LREE) and large ion lithofile elements (LILE), and depleted in heavy rare earth elements (HREE) and high field strength elements (HFSE), with LREE/HREE ratios of 11.7 to 18.1. The granite has negative Eu anomalies of 0.58 to 0.94 without obvious Ce anomalies (δCe=l.00-1.04). The relatively low initial a7Sr/a6Sr ratios of 0.7106 to 0.7179, positive ε±nt(t) values of 1.0 to 4.1, and two-stage Hf model ages (TDM2) ranging from 889 Ma to 1082 Ma, These geochemical features indicate that the granite derived from a juvenile crust. The (143Nd/144Nd)t values from the Jiangla'angzong granite range from 0.5121 to 0.5123, its eNd(t) values range from -10.17 to -6.10, its (^206pb /^204pb)t values range from 18.683 to 18.746, its (^207pb /^204pb)t values range from 15.695 to 15.700, and its (^208pb /^204pb)t values range from 39.012 to 39.071. These data indicate that the granite was formed by melting of the upper crust with the addition of some mantle materials. We propose that the Jiangla'angzong granite was formed during the post- collision extension of the Qiangtang and Lhasa terranes. 展开更多
关键词 Bangong Co-Nujiang Jiangla'angzong 1-type granite Zircon U-Pb Sr-Nd-Pb-Hf
下载PDF
Mesoproterozoic Continental Arc Type Granite in the Central Tianshan Mountains:Zircon SHRIMP U-Pb Dating and Geochemical Analyses 被引量:15
20
作者 YANG Tiannan LI Jinyi SUN Guihua WANG Yanbin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第1期117-125,共9页
The Central Tianshan belt in northwestern China is a small Precambrian block located in the southern part of the Central Asia Orogenic Belt (CAOB), which is considered as "the most voluminous block of young contine... The Central Tianshan belt in northwestern China is a small Precambrian block located in the southern part of the Central Asia Orogenic Belt (CAOB), which is considered as "the most voluminous block of young continental crust in the world" that comprises numerous small continental blocks separated by Paleozoic magmatic arcs. The Precambrian basement of the central Tianshan Mountains is composed of volcanic rocks and associated volcano-sedimentary rocks that were intruded by granitic plutons. Geochemical analyses demonstrate that the granitic plutons and volcanic rocks were generated in the Andean-type active continental arc environment like today's Chile, and the zircon U-Pb SHRIMP dating indicates that they were developed at about 956 Ma, possibly corresponding to the subduction of the inferred Mozambique Ocean under the Baltic-African super-continent. 展开更多
关键词 MESOPROTEROZOIC granite pluton magmatic arc Central Tianshan
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部