The flu pandemic is a global outbreak of a new strain of influenza A virus subtype H1N1, termed Pandemic H1N1/09 virus by the World Health Organization (WHO), which was first identified in April 2009. The disease has ...The flu pandemic is a global outbreak of a new strain of influenza A virus subtype H1N1, termed Pandemic H1N1/09 virus by the World Health Organization (WHO), which was first identified in April 2009. The disease has also been termed novel Influenza A(H1N1) and 2009 H1N1 flu by the US Centers for Disease Control and Prevention (CDC), and is commonly known as swine flu. The main strain of the virus has been termed A/California/07/2009 (H1N1) by scientists. This study was conducted to describe the epidemiology of influenza A(H1N1) infections in KSA during 2009. A descriptive study was carried out among attendants at hospitals and primary health care centers in Makkah during 2009, irrespective of age and sex. The data were collected by interviewing suspected persons using a pre-designed questionnaire, clinical examination, and specific laboratory investigation. A total of 1138 subjects were included in the study. Among the study population, 25% of the cases between 15 and 24 years old were found positive for influenza A(H1N1) by PCR technique. Although a significant population was affected by influenza A(H1N1) during 2009 in Makkah, the efforts and steps taken by health authorities at all levels―especially those in Directorate of Health Affairs of Makkah—helped to avert the mortality associated with the H1N1 influenza among the residents and those coming for Umrah and Hajj to Makkah by providing and timely diagnosis.展开更多
Avian influenza is the most contagious disease not only in poultry, but also in humans. Avian influenza in humans occurs mainly in Southeast Asia, but no human-to-human pandemic has occurred. Meanwhile, outbreaks of a...Avian influenza is the most contagious disease not only in poultry, but also in humans. Avian influenza in humans occurs mainly in Southeast Asia, but no human-to-human pandemic has occurred. Meanwhile, outbreaks of avian influenza in poultry occur on a global scale and cause a large economic loss. Migration antibodies passed from mother birds via eggs are said to be an important component of the immune system that protects birds from infection. Thus, the immunity status of mother birds can determine the ability of offspring to defend against infection. In this study, we investigated the presence of anti-avian influenza virus antibody in chickens hatched on a poultry farm in Indonesia and examined the involvement of migratory antibodies in protecting against virus infection by infectious experiments of highly pathogenic avian influenza in chickens. Blood was collected from randomly selected chicks, and antibodies against avian influenza virus were evaluated in all birds. Since these young birds had no history of vaccination, the antibodies were deemed to have been transferred from the mother birds. The enzyme-linked immunosorbent assay antibody titer in each bird varied. Infection of these birds with highly pathogenic avian influenza virus A/H5N1 intra-nasally resulted in a high mortality rate in chicks with low antibody titers but a low mortality rate in chicks with high antibody titers. These findings indicate that migratory antibody prevented highly pathogenic avian influenza A/H5N1 infection in chicks, suggesting that such a preventive effect could also be expected with outdoor natural infection.展开更多
The rapid epidemic of highly pathogenic A/H5N1 avian influenza virus by transmission from poultry to humans triggered global unrest in the pandemic of novel influenza. If a human trophic strain of avian influenza viru...The rapid epidemic of highly pathogenic A/H5N1 avian influenza virus by transmission from poultry to humans triggered global unrest in the pandemic of novel influenza. If a human trophic strain of avian influenza viruses replicates in livestock including pigs and chickens, it may have high infectivity and pathogenicity to humans. The most effective method of reducing the outbreaks of influenza would be prophylaxis with an effective vaccine as well as anti-viral drugs including Oseltamivir and Zanamivir hydrate. In this study, chicken antiserum against A/H5N1 virus was produced: the antisera from immunized adult chicken had a strong binding activity to A/H5N1 viral antigens by ELISA. Furthermore, the antiserum strongly inhibited hemaggregation of erythrocytes and cytopathic effects in MDCK cells, indicating a strong neutralization activity against A/H5N1 infections. Interestingly, the mortality rate of chicks inoculated with A/H5N1 virus was dramatically decreased with the antiserum injection. These results suggest that antiserum may be a potentially effective protective and therapeutic modality for A/H5N1 infection.展开更多
Mutation can alter the structure of viral proteins to form different structure. Carbon distribution is responsible for these changes in structure. The carbon distribution in proteins of human Influenza A virus is anal...Mutation can alter the structure of viral proteins to form different structure. Carbon distribution is responsible for these changes in structure. The carbon distribution in proteins of human Influenza A virus is analyzed here. Results reveal that the carbon contents are high in surface proteins, optimum in polymerase proteins and less in nuclear proteins. Polymerase proteins have better carbon distribution pattern than the other proteins. Thymine distribution in different frames of mRNAs are checked as it has link with carbon distribution pattern in the corresponding proteins. Results show that frame 4 is violating from thymine distribution. This is responsible for production of protein with different carbon distribution. Unusual thymine distribution in frame 3 are observed. The thymine distributions are different in viral mRNA compared to normal one. Minimizing the excess thymine in H1N1 mRNAs might improve the protein performance. Mutational study based on carbon distribution should be better exploited for further improving the protein stability, activity and ultimately for gene therapy.展开更多
Avian influenza A virus constitutes a large threat to human health. Recent outbreaks of highly pathogenic avian influenza H5N1 virus in poultry and in humans have raised concerns that an influenza pandemic will occur ...Avian influenza A virus constitutes a large threat to human health. Recent outbreaks of highly pathogenic avian influenza H5N1 virus in poultry and in humans have raised concerns that an influenza pandemic will occur in the near future. Transmission from avian species to humans remains sporadic, but the mortality associated with human infection is very high (about 62%). To date, there are no effective therapeutic drugs or a prophylactic vaccines available, which means that there is still a long way to go before we can eradicate or cure avian influenza. This review focuses on the molecular pathogenesis of avian influenza H5N1 virus infection. An understanding of the viral pathogenesis may facilitate the development of novel treatments or effective eradication of this fatal disease.展开更多
To the Editor: Bird flu or avian flu, caused by H5N1 virus, is a new emerging infectious disease. It is noted that this H5N1 virus jumped the species barrier and caused severe disease with high mortality in humans in...To the Editor: Bird flu or avian flu, caused by H5N1 virus, is a new emerging infectious disease. It is noted that this H5N1 virus jumped the species barrier and caused severe disease with high mortality in humans in many countries. The continued westward dissemination of H5N1 influenza A viruses in avian populations and the nearly 50% mortality of humans infected with H5N1 are a source of great international concern.1 Providing sufficient antiviral drugs and development and approval of new vaccines are the keys for control of the possible emerging pandemic of this atypical influenza.1'2 Based on the advance in bioinformatics, the immunomics becomes a new alternative in vaccine development.3 Advanced technologies for vaccine development, such as genome sequence analysis, microarray, proteomics approach, high-throughput cloning, bioinformatics database tools and computational vaccinology can be applied for vaccine development of several diseases including new emerging diseases.展开更多
文摘The flu pandemic is a global outbreak of a new strain of influenza A virus subtype H1N1, termed Pandemic H1N1/09 virus by the World Health Organization (WHO), which was first identified in April 2009. The disease has also been termed novel Influenza A(H1N1) and 2009 H1N1 flu by the US Centers for Disease Control and Prevention (CDC), and is commonly known as swine flu. The main strain of the virus has been termed A/California/07/2009 (H1N1) by scientists. This study was conducted to describe the epidemiology of influenza A(H1N1) infections in KSA during 2009. A descriptive study was carried out among attendants at hospitals and primary health care centers in Makkah during 2009, irrespective of age and sex. The data were collected by interviewing suspected persons using a pre-designed questionnaire, clinical examination, and specific laboratory investigation. A total of 1138 subjects were included in the study. Among the study population, 25% of the cases between 15 and 24 years old were found positive for influenza A(H1N1) by PCR technique. Although a significant population was affected by influenza A(H1N1) during 2009 in Makkah, the efforts and steps taken by health authorities at all levels―especially those in Directorate of Health Affairs of Makkah—helped to avert the mortality associated with the H1N1 influenza among the residents and those coming for Umrah and Hajj to Makkah by providing and timely diagnosis.
文摘Avian influenza is the most contagious disease not only in poultry, but also in humans. Avian influenza in humans occurs mainly in Southeast Asia, but no human-to-human pandemic has occurred. Meanwhile, outbreaks of avian influenza in poultry occur on a global scale and cause a large economic loss. Migration antibodies passed from mother birds via eggs are said to be an important component of the immune system that protects birds from infection. Thus, the immunity status of mother birds can determine the ability of offspring to defend against infection. In this study, we investigated the presence of anti-avian influenza virus antibody in chickens hatched on a poultry farm in Indonesia and examined the involvement of migratory antibodies in protecting against virus infection by infectious experiments of highly pathogenic avian influenza in chickens. Blood was collected from randomly selected chicks, and antibodies against avian influenza virus were evaluated in all birds. Since these young birds had no history of vaccination, the antibodies were deemed to have been transferred from the mother birds. The enzyme-linked immunosorbent assay antibody titer in each bird varied. Infection of these birds with highly pathogenic avian influenza virus A/H5N1 intra-nasally resulted in a high mortality rate in chicks with low antibody titers but a low mortality rate in chicks with high antibody titers. These findings indicate that migratory antibody prevented highly pathogenic avian influenza A/H5N1 infection in chicks, suggesting that such a preventive effect could also be expected with outdoor natural infection.
文摘The rapid epidemic of highly pathogenic A/H5N1 avian influenza virus by transmission from poultry to humans triggered global unrest in the pandemic of novel influenza. If a human trophic strain of avian influenza viruses replicates in livestock including pigs and chickens, it may have high infectivity and pathogenicity to humans. The most effective method of reducing the outbreaks of influenza would be prophylaxis with an effective vaccine as well as anti-viral drugs including Oseltamivir and Zanamivir hydrate. In this study, chicken antiserum against A/H5N1 virus was produced: the antisera from immunized adult chicken had a strong binding activity to A/H5N1 viral antigens by ELISA. Furthermore, the antiserum strongly inhibited hemaggregation of erythrocytes and cytopathic effects in MDCK cells, indicating a strong neutralization activity against A/H5N1 infections. Interestingly, the mortality rate of chicks inoculated with A/H5N1 virus was dramatically decreased with the antiserum injection. These results suggest that antiserum may be a potentially effective protective and therapeutic modality for A/H5N1 infection.
文摘Mutation can alter the structure of viral proteins to form different structure. Carbon distribution is responsible for these changes in structure. The carbon distribution in proteins of human Influenza A virus is analyzed here. Results reveal that the carbon contents are high in surface proteins, optimum in polymerase proteins and less in nuclear proteins. Polymerase proteins have better carbon distribution pattern than the other proteins. Thymine distribution in different frames of mRNAs are checked as it has link with carbon distribution pattern in the corresponding proteins. Results show that frame 4 is violating from thymine distribution. This is responsible for production of protein with different carbon distribution. Unusual thymine distribution in frame 3 are observed. The thymine distributions are different in viral mRNA compared to normal one. Minimizing the excess thymine in H1N1 mRNAs might improve the protein performance. Mutational study based on carbon distribution should be better exploited for further improving the protein stability, activity and ultimately for gene therapy.
文摘Avian influenza A virus constitutes a large threat to human health. Recent outbreaks of highly pathogenic avian influenza H5N1 virus in poultry and in humans have raised concerns that an influenza pandemic will occur in the near future. Transmission from avian species to humans remains sporadic, but the mortality associated with human infection is very high (about 62%). To date, there are no effective therapeutic drugs or a prophylactic vaccines available, which means that there is still a long way to go before we can eradicate or cure avian influenza. This review focuses on the molecular pathogenesis of avian influenza H5N1 virus infection. An understanding of the viral pathogenesis may facilitate the development of novel treatments or effective eradication of this fatal disease.
文摘To the Editor: Bird flu or avian flu, caused by H5N1 virus, is a new emerging infectious disease. It is noted that this H5N1 virus jumped the species barrier and caused severe disease with high mortality in humans in many countries. The continued westward dissemination of H5N1 influenza A viruses in avian populations and the nearly 50% mortality of humans infected with H5N1 are a source of great international concern.1 Providing sufficient antiviral drugs and development and approval of new vaccines are the keys for control of the possible emerging pandemic of this atypical influenza.1'2 Based on the advance in bioinformatics, the immunomics becomes a new alternative in vaccine development.3 Advanced technologies for vaccine development, such as genome sequence analysis, microarray, proteomics approach, high-throughput cloning, bioinformatics database tools and computational vaccinology can be applied for vaccine development of several diseases including new emerging diseases.