The objective of this work was to carry out a morphological characterization of arbuscular mycorrhizal fungi in the rhizosphere of Xanthosoma sagittifolium L. Schott plants. The plant material used was the white and r...The objective of this work was to carry out a morphological characterization of arbuscular mycorrhizal fungi in the rhizosphere of Xanthosoma sagittifolium L. Schott plants. The plant material used was the white and red cultivars of X. sagittifolium, belonging to age intervals of 3 - 6, 6 - 9, and 9 - 12 months. Three harvest sites were chosen in the Central Region of Cameroon. In each site, soil from the rhizosphere and plant roots was collected in a randomized manner. In the field, the agronomic parameters were evaluated. The physicochemical characteristics of the soils, the mycorrhization index, and the morphological characterization of the mycorrhizal types of each site were carried out. The results obtained show that the agronomic growth parameters varied significantly using the Student Newman and Keuls Test depending on the harvest sites. The soils’ pH in all sites was acidic and ranged between 4.6 and 5.8. The Nkometou site has a loamy texture while the Olembe and Soa sites have loam-clay-sandy and loam-clay textures respectively. The highest mycorrhization frequencies appeared at the Nkometou site, with 75 and 87.33% of the white and red cultivars plant roots at 6 - 9 and 3 - 6 months. The relative abundance of AMF arbuscular mycorrhizal fungal spores in the rhizosphere of X. sagittifolium plants varied with age and cultivar. There were 673 spores between 9 - 12 months in Nkometou in the red cultivar. Six AMF genera were identified in all the different soils collected: Acaulospora sp., Funneliformis sp., Gigaspora sp., Glomus sp., Scutellospora sp., and Septoglomus sp. The genus Glomus sp. was the most present at all age intervals in both cultivars.展开更多
This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-...This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-ecological zones. Soil samples were also used to evaluate directly the AMF abundance following the various altitudes and after trapping by sorghum plant. The results showed that soil properties, AMF spore abundances and colonization fluctuated significantly at different altitudes. The most represented texture was sandy loam. The bimodal zone presented a homogeneous texture (sandy loam) in all its localities. Cacao soil chemical characteristics showed that, the highest nitrogen rate (0.47%;p 0.05, Scott-Knott test) was recorded at Melong in a monomodal zone while Tonga in the Western highlands displayed the lowest rate (0.13%). Soil P concentration was significantly high in monomodal zones (Mbanga and Melong). Soil pH level indicated that the soil from Tonga in the Western highlands was neutral (pH = 6.67), and soils of other localities under study were acidic with the lowest (4.75) pH level recorded at Melong in a monomodal zone. In soil samples, the highest spore density (1.03 spores/g soil) was observed at Ntui in Bimodal zone, while the lowest spore density (0.26 spores/g soil) was observed at Bafang in the Western highlands. Root colonization showed that the sample from Bokito in a bimodal zone displayed the best frequency of mycorrhization (86.11%) while the sample from Bafang in the Western highlands recorded the lowest (27.11%). The PCA analysis highlighted that available phosphorus, pH and altitude all strongly correlated with AMF root colonization ability and can be used as a predictor of AMF colonization ability in cacao rhizosphere.展开更多
The accurate identification of pathogenic fungi is crucial for diagnosing and treating fungal infections. Recent advancements in molecular biotechnology, phylogenetic analysis, and the requirements of the Melbourne Co...The accurate identification of pathogenic fungi is crucial for diagnosing and treating fungal infections. Recent advancements in molecular biotechnology, phylogenetic analysis, and the requirements of the Melbourne Code have led to changes in the classification and naming of fungi. These changes have caused significant confusion for medical laboratories and clinical personnel. This article summarizes the classification and new names of common pathogenic fungi to enhance fungi identification skills and provide accurate information for clinical diagnosis and treatment.展开更多
The use of entomopathogenic fungi (EF) in recent years has been highly effective against the different orders of insects considered pests of agricultural importance and their conidia have been commonly applied, but it...The use of entomopathogenic fungi (EF) in recent years has been highly effective against the different orders of insects considered pests of agricultural importance and their conidia have been commonly applied, but it has been reported that these are sensitive to the environmental conditions. For this reason, biopesticides products have been formulated based on secondary metabolites, recently. These biomolecules participate as biological control agent, such as: cyclic depsipeptides, amino acids, polyketides, polyphenols and terpenoids, affecting their morphology, life cycle and insect behavior. The use of secondary metabolites of entomopathogenic fungi opens the possibility of application in a more efficient way for the control of agricultural pests in a compatible with the environment and human health;therefore, it is important to know, analyzing the type of molecules, their effects, and their different methods of application.展开更多
The fungal community associated with beach sand and plants located along marine coasts are an under-studied area of research despite its potential relevance to human health. In this study, we isolated and identified t...The fungal community associated with beach sand and plants located along marine coasts are an under-studied area of research despite its potential relevance to human health. In this study, we isolated and identified the cultivable mycobiota associated with sand and plants collected along the coast of Gran Canaria (Spain) using culture-dependent and -independent methods. Clinically relevant species belonging to Cryptococcus spp. and related genera such as Naganishia and Papilotrema were isolated and identified from shoreline plants. Moreover, Candida tropicalis was isolated from beach sand, and Aspergillus fumigatus and Aspergillus terreus strains were associated with both types of samples (i.e., plants and beach sand). We conclude that beach sand and shoreline plants are potential reservoirs of fungi of high clinical interest. We recommend including beach sand and plants from the environment when assessing the quality of marine coastal systems. Our results open a framework for studying the natural marine environment and its role in the epidemiology of infectious diseases in order to more accurately manage public health.展开更多
[Objectives]This paper was to figure out whether the dominant bacterial community has the role and effect of bacterial community and its defense mechanism against potential pathogenic fungi in Artemisia annua,and thus...[Objectives]This paper was to figure out whether the dominant bacterial community has the role and effect of bacterial community and its defense mechanism against potential pathogenic fungi in Artemisia annua,and thus establish a systematic model of bacteria-fungus-plant.[Methods]Fifty-eight strains of bacteria and one strain of pathogenic fungi,Globisporangium ultimatum,were used for the experiments.These 58 bacterial strains were assembled into a bacterial community,and the bacteria with abundance in the top 1%were reassembled into a dominant bacterial community as measured by 16S rDNA.[Results]The growth of A.annua seedlings inoculated with bacterial communities and pathogenic fungi or dominant bacterial communities and pathogenic fungi was significantly better than that of A.annua seedlings inoculated with pathogenic fungi during in vitro confrontation,which was evident in both enzymatic and non-enzymatic antioxidant assays.[Conclusions]The results suggest that the dominant bacterial community has a crucial role as a representative core microbial community of synthetic bacterial community,which can protect plants by interfering with the growth of phytopathogenic fungi mediated by chemical signals,and can be used as the main synthetic community of biocides to achieve the effect of biocontrol.展开更多
Root-associated endophytic fungi like Serendipita indica and arbuscular mycorrhizal(AM) fungi can improve plant growth and root construction, but the potential mechanism is unclear. In this study, Funneliformis mossea...Root-associated endophytic fungi like Serendipita indica and arbuscular mycorrhizal(AM) fungi can improve plant growth and root construction, but the potential mechanism is unclear. In this study, Funneliformis mosseae(an AM fungus) and S. indica, singly or in combination were inoculated into trifoliate orange(Poncirus trifoliata) seedlings, to assess changes in biomass and root morphological traits, coupled with auxins and cytokinins concentrations in leaves and roots and the expression of auxin synthesis and transporter protein genes. After 20 weeks of inoculation with these fungi, shoot and root biomass, root total length, taproot length, average diameter, surface area, volume, and the number of lateral roots in 1st-, 2nd-, and 3rd-order were improved, and S. indica showed a relatively greater effect than F. mosseae and dual inoculation. Endophytic fungal inoculation also significantly increased the concentration of indoleacetic acid, indole butyric acid, trans-zeatin,dihydrozeatin, and isopentenyl adenine in leaves and roots, whilst F. mosseae and S. indica exhibited relatively greater effects on leaves and roots, respectively. Correlation analysis revealed that both biomass and root morphological traits(except root projected area) were significantly positively associated with endogenous auxins and cytokinins. In addition, the inoculated plants recorded comparatively higher expression levels of indoleacetic acid synthesis genes(PtTAA1, PtTAR2, PtYUC3, PtYUC4, PtYUC6, and PtYUC8) and indoleacetic acid transporter protein genes(PtAUX1, PtLAX1, PtLAX2, PtLAX3, PtPIN1, PtPIN3, PtPIN4, PtABCB1, and PtABCB19) than the non-inoculated plants, among which F. mosseae and S. indica showed better effects in leaves and roots, respectively. These results suggest that root-associated endophytic fungi improved plant growth and root architecture, which were associated with changes in endogenous auxins and cytokinins.展开更多
Plant tolerance to aluminum(Al)toxicity can be enhanced by an ectomycorrhizal(ECM)fungus through biological filtering or physical blockage.To understand the roles of ECM colonization in Al absorption with regard to Al...Plant tolerance to aluminum(Al)toxicity can be enhanced by an ectomycorrhizal(ECM)fungus through biological filtering or physical blockage.To understand the roles of ECM colonization in Al absorption with regard to Al tolerance,Pinus massoniana seedlings were inoculated with either Lactarius deliciosus(L.:Fr.)Gray isolate 2 or Pisolithus tinctorius(Pers.)Coker et Couch isolate 715 and cultivated in an acid yellow soil with or without 1.0 mM Al^(3+)irrigation for 10 weeks.Biomass production,Al bioaccumulation and transport in seedlings colonized by the two ECM fungi were compared,and the three absorption kinetics(pseudo-first order,pseudo-second order and intraparticle diffusion)models used to evaluate variances in root Al^(3+)absorption capacity.Results show that both fungi increased aboveground biomass and Al tolerance of P.massoniana seedlings,but L.deliciosus 2 was more effective than P.tinctorius 715.Lower Al absorption capacity,fewer available active sites and decreased affinity and boundary layer thickness for Al^(3+),and higher Al accumulation and translocation contributed to the increased Al tolerance in the ECM-inoculated seedlings.These results advance our understanding of the mechanisms and strategies in plant Alto lerance conferred by ECM fungi and show that inoculation with L.deliciosus will better enhance Al tolerance in P.massoniana seedlings used for forest plantation and ecosystem restoration in acidic soils,particularly in Southwest China and similar soils worldwide.展开更多
Arbuscular mycorrhizal(AM)fungi distribute widely in natural habits and play a variety of ecological functions.In order to test the physiological response to salt stress mediated by different AM fungi,Viola prionantha...Arbuscular mycorrhizal(AM)fungi distribute widely in natural habits and play a variety of ecological functions.In order to test the physiological response to salt stress mediated by different AM fungi,Viola prionantha was selected as the host,the dominant AM fungus in the rhizosphere of V.philippica growing in Songnen saline-alkali grassland,Rhizophagus irregularis,and their mixtures were used as inoculants,and NaCl stress was applied after the roots were colonized.The results showed that V.philippica could be colonized by AM fungi in the field and the colonization rate ranged from 73.33%to 96.67%,and Claroideoglomus etunicatum was identified as the dominant AM fungi species in the rhizosphere of V.philippica by morphology combined with sequencing for AM fungal AML1/AML2 target.Inoculation with both the species resulted in the formation of mycorrhizal symbiosis(the colonization rate was more than 70%)and AM fungi significantly enhanced plants’tolerance to salt stress of varying magnitude.Higher activity of antioxidant enzymes and augmented levels of proline and other osmoregulators were observed in AM plants.The content of MDA in CK was higher than that in the inoculations with the stress of 100,200,and 250 mM.All indices except soluble protein content and MDA content were significantly correlated with AM fungal colonization indices.The analysis for different AM fungal effects showed that the mixtures and R.irregularis worked even better than C.etunicatum.These results will provide theoretical support for the exploration and screening of salt-tolerant AM fungi species and also for the application of AM-ornamental plants in saline-alkali urban greening.展开更多
Alternate wetting and drying(AWD)system,in which water has been reduced by approximately 35%with an increased occurrence of beneficial arbuscular mycorrhizal(AM)symbiosis and no negative impact on rice yield,was propo...Alternate wetting and drying(AWD)system,in which water has been reduced by approximately 35%with an increased occurrence of beneficial arbuscular mycorrhizal(AM)symbiosis and no negative impact on rice yield,was proposed to utilize water and nutrients more sustainable.In this study,we selected six rice cultivars(Centauro,Loto,Selenio,Vialone nano,JSendra and Puntal)grown under AWD conditions,and investigated their responsiveness to AM colonization and how they select diverse AM taxa.In order to investigate root-associated AM fungus communities,molecular cloning-Sanger sequencing on small subunit rDNA data were obtained from five out of the six rice cultivars and compared with Next Generation Sequencing(NGS)data,which were previously obtained in Vialone nano.The results showed that all the cultivars were responsive to AM colonization with the development of AM symbiotic structures,even if with differences in the colonization and arbuscule abundance in the root systems.We identified 16 virtual taxa(VT)in the soil compartment and 7 VT in the root apparatus.We emphasized that the NGS analysis gives additional value to the results thanks to a more in-depth reading of the less represented AM fungus taxa.展开更多
Sesame is Burkina Faso’s second essential agricultural export after cotton. It’s consequently a supply of income for producers and foreign exchange for the country. However, sesame production is characterized by low...Sesame is Burkina Faso’s second essential agricultural export after cotton. It’s consequently a supply of income for producers and foreign exchange for the country. However, sesame production is characterized by low average yields of about 538 kg·ha<sup>-1</sup> at the farmer’s field as compared to the potential yield of the improved varieties (1500 - 2000 kg·ha<sup>-1</sup>). Fungal diseases are some of the major constraints to sesame production in Burkina Faso. The present study contributes to the development of means to control pathogenic fungi of this crop, which are responsible for significant losses. The objective is to identify the fungi associated with diseased sesame plant samples. To this end, 149 samples of diseased sesame plants were collected from different production sites located in three agro-climatic zones of the country. The analysis of the samples according to the blotting paper method, based on the morphological characteristics of the fungi, allowed the identification of 18 genera with prevalence rates from 2.68% to 97.98%. The most frequently identified genera were Macrophomina (97.98%), Cercospora (86.57%), Fusarium (85.23%), Phoma (62.41%) and Colletotrichum (61.07%). The results also showed a variable distribution of fungi according to the agro-climatic zone with the predominance of Macrophomina in all three zones. Molecular identification by DNA sequencing of 120 isolates belonging to the different fungi detected allowed the identification of 25 species of which the most representative were Macrophomina phaseolina, Cercospora sesami, Corynespora cassiicola, Alternaria simsimi, Alternaria porri, Fusarium oxysporum, F. fujikuroi, F. equiseti, Colletotrichum capsici, and C. gloesporiodes. The present study showed that diseased sesame plants collected from different production sites in Burkina Faso housed several species of fungi. The fungi presence in diseased plants indicates the need to inform and raise the stakeholders’ awareness about the phytosanitary problems of sesame, but also to develop effective and appropriate control methods against these crop pathogens in Burkina Faso.展开更多
文摘The objective of this work was to carry out a morphological characterization of arbuscular mycorrhizal fungi in the rhizosphere of Xanthosoma sagittifolium L. Schott plants. The plant material used was the white and red cultivars of X. sagittifolium, belonging to age intervals of 3 - 6, 6 - 9, and 9 - 12 months. Three harvest sites were chosen in the Central Region of Cameroon. In each site, soil from the rhizosphere and plant roots was collected in a randomized manner. In the field, the agronomic parameters were evaluated. The physicochemical characteristics of the soils, the mycorrhization index, and the morphological characterization of the mycorrhizal types of each site were carried out. The results obtained show that the agronomic growth parameters varied significantly using the Student Newman and Keuls Test depending on the harvest sites. The soils’ pH in all sites was acidic and ranged between 4.6 and 5.8. The Nkometou site has a loamy texture while the Olembe and Soa sites have loam-clay-sandy and loam-clay textures respectively. The highest mycorrhization frequencies appeared at the Nkometou site, with 75 and 87.33% of the white and red cultivars plant roots at 6 - 9 and 3 - 6 months. The relative abundance of AMF arbuscular mycorrhizal fungal spores in the rhizosphere of X. sagittifolium plants varied with age and cultivar. There were 673 spores between 9 - 12 months in Nkometou in the red cultivar. Six AMF genera were identified in all the different soils collected: Acaulospora sp., Funneliformis sp., Gigaspora sp., Glomus sp., Scutellospora sp., and Septoglomus sp. The genus Glomus sp. was the most present at all age intervals in both cultivars.
文摘This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-ecological zones. Soil samples were also used to evaluate directly the AMF abundance following the various altitudes and after trapping by sorghum plant. The results showed that soil properties, AMF spore abundances and colonization fluctuated significantly at different altitudes. The most represented texture was sandy loam. The bimodal zone presented a homogeneous texture (sandy loam) in all its localities. Cacao soil chemical characteristics showed that, the highest nitrogen rate (0.47%;p 0.05, Scott-Knott test) was recorded at Melong in a monomodal zone while Tonga in the Western highlands displayed the lowest rate (0.13%). Soil P concentration was significantly high in monomodal zones (Mbanga and Melong). Soil pH level indicated that the soil from Tonga in the Western highlands was neutral (pH = 6.67), and soils of other localities under study were acidic with the lowest (4.75) pH level recorded at Melong in a monomodal zone. In soil samples, the highest spore density (1.03 spores/g soil) was observed at Ntui in Bimodal zone, while the lowest spore density (0.26 spores/g soil) was observed at Bafang in the Western highlands. Root colonization showed that the sample from Bokito in a bimodal zone displayed the best frequency of mycorrhization (86.11%) while the sample from Bafang in the Western highlands recorded the lowest (27.11%). The PCA analysis highlighted that available phosphorus, pH and altitude all strongly correlated with AMF root colonization ability and can be used as a predictor of AMF colonization ability in cacao rhizosphere.
文摘The accurate identification of pathogenic fungi is crucial for diagnosing and treating fungal infections. Recent advancements in molecular biotechnology, phylogenetic analysis, and the requirements of the Melbourne Code have led to changes in the classification and naming of fungi. These changes have caused significant confusion for medical laboratories and clinical personnel. This article summarizes the classification and new names of common pathogenic fungi to enhance fungi identification skills and provide accurate information for clinical diagnosis and treatment.
文摘The use of entomopathogenic fungi (EF) in recent years has been highly effective against the different orders of insects considered pests of agricultural importance and their conidia have been commonly applied, but it has been reported that these are sensitive to the environmental conditions. For this reason, biopesticides products have been formulated based on secondary metabolites, recently. These biomolecules participate as biological control agent, such as: cyclic depsipeptides, amino acids, polyketides, polyphenols and terpenoids, affecting their morphology, life cycle and insect behavior. The use of secondary metabolites of entomopathogenic fungi opens the possibility of application in a more efficient way for the control of agricultural pests in a compatible with the environment and human health;therefore, it is important to know, analyzing the type of molecules, their effects, and their different methods of application.
文摘The fungal community associated with beach sand and plants located along marine coasts are an under-studied area of research despite its potential relevance to human health. In this study, we isolated and identified the cultivable mycobiota associated with sand and plants collected along the coast of Gran Canaria (Spain) using culture-dependent and -independent methods. Clinically relevant species belonging to Cryptococcus spp. and related genera such as Naganishia and Papilotrema were isolated and identified from shoreline plants. Moreover, Candida tropicalis was isolated from beach sand, and Aspergillus fumigatus and Aspergillus terreus strains were associated with both types of samples (i.e., plants and beach sand). We conclude that beach sand and shoreline plants are potential reservoirs of fungi of high clinical interest. We recommend including beach sand and plants from the environment when assessing the quality of marine coastal systems. Our results open a framework for studying the natural marine environment and its role in the epidemiology of infectious diseases in order to more accurately manage public health.
基金Supported by Science and Technology Plan Project of Guizhou Province,China(QKH JC[2020]1Y179)Key Field Project of Education Department of Guizhou Province(QJHKYZ[2021]044)+1 种基金Forestry Research Project of Guizhou Province(QLKH[2021]11)Project of Guizhou Provincial Characteristic Key Laboratory(QJHKY[2021]002).
文摘[Objectives]This paper was to figure out whether the dominant bacterial community has the role and effect of bacterial community and its defense mechanism against potential pathogenic fungi in Artemisia annua,and thus establish a systematic model of bacteria-fungus-plant.[Methods]Fifty-eight strains of bacteria and one strain of pathogenic fungi,Globisporangium ultimatum,were used for the experiments.These 58 bacterial strains were assembled into a bacterial community,and the bacteria with abundance in the top 1%were reassembled into a dominant bacterial community as measured by 16S rDNA.[Results]The growth of A.annua seedlings inoculated with bacterial communities and pathogenic fungi or dominant bacterial communities and pathogenic fungi was significantly better than that of A.annua seedlings inoculated with pathogenic fungi during in vitro confrontation,which was evident in both enzymatic and non-enzymatic antioxidant assays.[Conclusions]The results suggest that the dominant bacterial community has a crucial role as a representative core microbial community of synthetic bacterial community,which can protect plants by interfering with the growth of phytopathogenic fungi mediated by chemical signals,and can be used as the main synthetic community of biocides to achieve the effect of biocontrol.
基金supported by the Plan in Scientific and Technological Innovation Team of Outstanding Young Scientists,Hubei Provincial Department of Education (Grant No.T201604)。
文摘Root-associated endophytic fungi like Serendipita indica and arbuscular mycorrhizal(AM) fungi can improve plant growth and root construction, but the potential mechanism is unclear. In this study, Funneliformis mosseae(an AM fungus) and S. indica, singly or in combination were inoculated into trifoliate orange(Poncirus trifoliata) seedlings, to assess changes in biomass and root morphological traits, coupled with auxins and cytokinins concentrations in leaves and roots and the expression of auxin synthesis and transporter protein genes. After 20 weeks of inoculation with these fungi, shoot and root biomass, root total length, taproot length, average diameter, surface area, volume, and the number of lateral roots in 1st-, 2nd-, and 3rd-order were improved, and S. indica showed a relatively greater effect than F. mosseae and dual inoculation. Endophytic fungal inoculation also significantly increased the concentration of indoleacetic acid, indole butyric acid, trans-zeatin,dihydrozeatin, and isopentenyl adenine in leaves and roots, whilst F. mosseae and S. indica exhibited relatively greater effects on leaves and roots, respectively. Correlation analysis revealed that both biomass and root morphological traits(except root projected area) were significantly positively associated with endogenous auxins and cytokinins. In addition, the inoculated plants recorded comparatively higher expression levels of indoleacetic acid synthesis genes(PtTAA1, PtTAR2, PtYUC3, PtYUC4, PtYUC6, and PtYUC8) and indoleacetic acid transporter protein genes(PtAUX1, PtLAX1, PtLAX2, PtLAX3, PtPIN1, PtPIN3, PtPIN4, PtABCB1, and PtABCB19) than the non-inoculated plants, among which F. mosseae and S. indica showed better effects in leaves and roots, respectively. These results suggest that root-associated endophytic fungi improved plant growth and root architecture, which were associated with changes in endogenous auxins and cytokinins.
基金supported by the National Natural Science Foundation of China (31570599 and 32171753)。
文摘Plant tolerance to aluminum(Al)toxicity can be enhanced by an ectomycorrhizal(ECM)fungus through biological filtering or physical blockage.To understand the roles of ECM colonization in Al absorption with regard to Al tolerance,Pinus massoniana seedlings were inoculated with either Lactarius deliciosus(L.:Fr.)Gray isolate 2 or Pisolithus tinctorius(Pers.)Coker et Couch isolate 715 and cultivated in an acid yellow soil with or without 1.0 mM Al^(3+)irrigation for 10 weeks.Biomass production,Al bioaccumulation and transport in seedlings colonized by the two ECM fungi were compared,and the three absorption kinetics(pseudo-first order,pseudo-second order and intraparticle diffusion)models used to evaluate variances in root Al^(3+)absorption capacity.Results show that both fungi increased aboveground biomass and Al tolerance of P.massoniana seedlings,but L.deliciosus 2 was more effective than P.tinctorius 715.Lower Al absorption capacity,fewer available active sites and decreased affinity and boundary layer thickness for Al^(3+),and higher Al accumulation and translocation contributed to the increased Al tolerance in the ECM-inoculated seedlings.These results advance our understanding of the mechanisms and strategies in plant Alto lerance conferred by ECM fungi and show that inoculation with L.deliciosus will better enhance Al tolerance in P.massoniana seedlings used for forest plantation and ecosystem restoration in acidic soils,particularly in Southwest China and similar soils worldwide.
基金Research was funded by National Natural Science Foundation of China with the Grant No.31601986 and Heilongjiang Postdoctoral Scientific Research Developmental Fund(LBH-Q16005).
文摘Arbuscular mycorrhizal(AM)fungi distribute widely in natural habits and play a variety of ecological functions.In order to test the physiological response to salt stress mediated by different AM fungi,Viola prionantha was selected as the host,the dominant AM fungus in the rhizosphere of V.philippica growing in Songnen saline-alkali grassland,Rhizophagus irregularis,and their mixtures were used as inoculants,and NaCl stress was applied after the roots were colonized.The results showed that V.philippica could be colonized by AM fungi in the field and the colonization rate ranged from 73.33%to 96.67%,and Claroideoglomus etunicatum was identified as the dominant AM fungi species in the rhizosphere of V.philippica by morphology combined with sequencing for AM fungal AML1/AML2 target.Inoculation with both the species resulted in the formation of mycorrhizal symbiosis(the colonization rate was more than 70%)and AM fungi significantly enhanced plants’tolerance to salt stress of varying magnitude.Higher activity of antioxidant enzymes and augmented levels of proline and other osmoregulators were observed in AM plants.The content of MDA in CK was higher than that in the inoculations with the stress of 100,200,and 250 mM.All indices except soluble protein content and MDA content were significantly correlated with AM fungal colonization indices.The analysis for different AM fungal effects showed that the mixtures and R.irregularis worked even better than C.etunicatum.These results will provide theoretical support for the exploration and screening of salt-tolerant AM fungi species and also for the application of AM-ornamental plants in saline-alkali urban greening.
基金AGER-Fondazioni in rete per la ricerca agroalimentare(https://www.progettoager.it/)(Grant No.2010-2369)by Joint Programming Initiative on Agriculture,Food Security and Climate Change(FACCE-JPI)project Green Rice(Sustainable and environmental friendly rice cultivation systems in Europe).
文摘Alternate wetting and drying(AWD)system,in which water has been reduced by approximately 35%with an increased occurrence of beneficial arbuscular mycorrhizal(AM)symbiosis and no negative impact on rice yield,was proposed to utilize water and nutrients more sustainable.In this study,we selected six rice cultivars(Centauro,Loto,Selenio,Vialone nano,JSendra and Puntal)grown under AWD conditions,and investigated their responsiveness to AM colonization and how they select diverse AM taxa.In order to investigate root-associated AM fungus communities,molecular cloning-Sanger sequencing on small subunit rDNA data were obtained from five out of the six rice cultivars and compared with Next Generation Sequencing(NGS)data,which were previously obtained in Vialone nano.The results showed that all the cultivars were responsive to AM colonization with the development of AM symbiotic structures,even if with differences in the colonization and arbuscule abundance in the root systems.We identified 16 virtual taxa(VT)in the soil compartment and 7 VT in the root apparatus.We emphasized that the NGS analysis gives additional value to the results thanks to a more in-depth reading of the less represented AM fungus taxa.
文摘Sesame is Burkina Faso’s second essential agricultural export after cotton. It’s consequently a supply of income for producers and foreign exchange for the country. However, sesame production is characterized by low average yields of about 538 kg·ha<sup>-1</sup> at the farmer’s field as compared to the potential yield of the improved varieties (1500 - 2000 kg·ha<sup>-1</sup>). Fungal diseases are some of the major constraints to sesame production in Burkina Faso. The present study contributes to the development of means to control pathogenic fungi of this crop, which are responsible for significant losses. The objective is to identify the fungi associated with diseased sesame plant samples. To this end, 149 samples of diseased sesame plants were collected from different production sites located in three agro-climatic zones of the country. The analysis of the samples according to the blotting paper method, based on the morphological characteristics of the fungi, allowed the identification of 18 genera with prevalence rates from 2.68% to 97.98%. The most frequently identified genera were Macrophomina (97.98%), Cercospora (86.57%), Fusarium (85.23%), Phoma (62.41%) and Colletotrichum (61.07%). The results also showed a variable distribution of fungi according to the agro-climatic zone with the predominance of Macrophomina in all three zones. Molecular identification by DNA sequencing of 120 isolates belonging to the different fungi detected allowed the identification of 25 species of which the most representative were Macrophomina phaseolina, Cercospora sesami, Corynespora cassiicola, Alternaria simsimi, Alternaria porri, Fusarium oxysporum, F. fujikuroi, F. equiseti, Colletotrichum capsici, and C. gloesporiodes. The present study showed that diseased sesame plants collected from different production sites in Burkina Faso housed several species of fungi. The fungi presence in diseased plants indicates the need to inform and raise the stakeholders’ awareness about the phytosanitary problems of sesame, but also to develop effective and appropriate control methods against these crop pathogens in Burkina Faso.