We report the detailed crystal structures and physical properties of Ru_(1-x)Mo_(x)alloys in the solid solution range of x=0.1-0.9.Structure characterizations indicate that the crystal structure changes from the hcp-M...We report the detailed crystal structures and physical properties of Ru_(1-x)Mo_(x)alloys in the solid solution range of x=0.1-0.9.Structure characterizations indicate that the crystal structure changes from the hcp-Mg-type,toβ-CrFe-type,and then bcc-W-type.The measurements of physical properties show that the Ru_(1-x)Mo_(x)samples with x≥0.2are superconductors and the superconducting transition temperature T_c as a function of Mo content exhibits a dome-like behavior.展开更多
Mg-14Li-1Al (LA141), LA141-0.3Y, LA141-0.3Sr, and LA141-0.3Y-0.3Sr alloys were prepared in an induction furnace in the argon atmosphere. The microstructures of these alloys were investigated through scanning electro...Mg-14Li-1Al (LA141), LA141-0.3Y, LA141-0.3Sr, and LA141-0.3Y-0.3Sr alloys were prepared in an induction furnace in the argon atmosphere. The microstructures of these alloys were investigated through scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive spectrometer (EDS). The results show that yttrium and/or strontium additions produce a strong grain refining effect in LA141 alloy. The mean grain sizes of the alloys with addition of Y and/or Sr are reduced remarkably from 600 to 500, 260, 230 μm, respectively. Al 2 Y, Al 4 Sr and Mg 17 Sr 2 phases with different morphologies are verified and exist inside the grain or at the grain boundaries, thus possibly act as heterogeneous nucleation sites and pin up grain boundaries, which restrain the grain growth.展开更多
The microstructural characteristics, mechanical properties and creep resistance of Mg-(8%-12%) Zn-(2%-6%) A1 alloys were investigated to get a better overall understanding of these series alloys. The results indic...The microstructural characteristics, mechanical properties and creep resistance of Mg-(8%-12%) Zn-(2%-6%) A1 alloys were investigated to get a better overall understanding of these series alloys. The results indicate that the microstructure of the alloys ZA82, ZA102 and ZA122 with the mass ratio of Zn to A1 of 4-6 is mainly composed of a-Mg matrix and two different morphologies of precipitates (block τ-Mg32(Al, Zn)49 and dense lamellar ε-Mg51Zn20), the alloys ZA84, ZA104 and ZA124 with the mass ratio of 2-3 contain α-Mg matrix and only block r phases, and the alloys ZA86, ZA106 and ZA126 with the mass ratio of 1-2 consist of a-Mg matrix, block r precipitates, lamellar Ф-Al2Mg5Zn2 eutectics and flocculent β-Mg17Al12 compounds. The alloys studied with the mass ratio of Zn to A1 of 2-3 exhibit high creep resistance, and the alloy ZA124 with the continuous network of r precipitating along grain boundaries shows the highest creep resistance.展开更多
The effect of Ce, Co, and B on the formation of 1:13 phase in La(Fe, Si)13 alloys was investigated by XRD, SEM and EDS. The results show that Co can improve the formation of 1:13 phase in as-cast LaFe11.6-xCoxSi1....The effect of Ce, Co, and B on the formation of 1:13 phase in La(Fe, Si)13 alloys was investigated by XRD, SEM and EDS. The results show that Co can improve the formation of 1:13 phase in as-cast LaFe11.6-xCoxSi1.4 alloys, but in as-cast and annealed LaFe11.6Si1.4-xCox alloys, it will hamper the formation of 1:13 phase and help the formation of a-Fe(Co, Si) solid solution. Ce2Fel7 phases will form when x reaches a certain value in as-cast and annealed La1-xCexFe11.5Si1.5 alloys. B can improve the formation of 1:13 phase accompanied with Fe2B phase in as-cast LaFe11.6-xBxSi1.4 alloys. B improves the formation of a-Fe solid solution in LaFe11.6Si1.4-xBx alloys, and there is almost only a-Fe in as-cast and annealed LaFe11.6Si0.9B0.5 alloy. In all, the introduction of Co, B, and Ce cannot eliminate the a-Fe phases in corresponding alloys prepared by the high-temperature and short-time annealing process.展开更多
To clarify the corrosion mechanism associated with the precipitate of T1(Al2CuLi)in Al-Li alloys,the simulated bulk precipitate of T1 was fabricated through melting and casting.Its electrochemical behavior and couplin...To clarify the corrosion mechanism associated with the precipitate of T1(Al2CuLi)in Al-Li alloys,the simulated bulk precipitate of T1 was fabricated through melting and casting.Its electrochemical behavior and coupling behavior with α(Al)in 3.5% NaCl solution were investigated.Meanwhile,the simulated Al alloy containing T1 particle was prepared and its corrosion morphology was observed.The results show that there exists a dynamic conversion corrosion mechanism associated with the precipitate of T1.At the beginning,the precipitate of T1 is anodic to the alloy base and corrosion occurs on its surface.However,during its corrosion process,its potential moves to a positive direction with immersion time increasing,due to the preferential dissolution of Li and the enrichment of Cu.As a result,the corroded T1 becomes cathodic to the alloy base at a later stage,leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery.It is suggested that the localized corrosion associated with the precipitate of T1 in Al-Li alloys is caused by the alternate anodic dissolution of the T1 precipitate and the alloy base at its adjacent periphery.展开更多
The corrosion behavior of BFe10-1-1 alloy with different rare earth (RE) contents in simulated flowing marine water was investigated by X-ray diffractometer and scanning electron microscope (SEM). It was demonstra...The corrosion behavior of BFe10-1-1 alloy with different rare earth (RE) contents in simulated flowing marine water was investigated by X-ray diffractometer and scanning electron microscope (SEM). It was demonstrated that the corrosion rate of BFel0-1-1 alloy with the same chemical compositions in faster flow velocity of marine water was higher than that in a lower flow velocity of marine water. Fixing the flow velocity, BFe 10-1-1 alloy had the best flushing corrosion resistance when the RE content was 0.04wt.%. The consequence of such good corrosion resistance was attributed to the formation of compact protective film on alloy surface containing RE phase such as CeNis. The RE-contained film combines with other corrosion products firmly, which was difficult to fall off from the alloy surface in the flowing marine water. Additionally, SEM analysis confirmed that pitting mechanism, which would be transformed to spalling mechanism gradually with further increasing RE content, was the prevalent mechanism when the alloy contained 0.04wt.%RE.展开更多
The precipitation behaviors of an A1-Cu-Li-Mn-Zr alloy at different ageing temperatures (120, 160 and 200 ~C) were investigated using Vickers hardness measurements and transmission electron microscopy (TEM) charac...The precipitation behaviors of an A1-Cu-Li-Mn-Zr alloy at different ageing temperatures (120, 160 and 200 ~C) were investigated using Vickers hardness measurements and transmission electron microscopy (TEM) characterization. Age hardening curves show an increase in precipitation kinetics with increasing ageing temperature. The results of TEM show that for the samples peak aged at 120 ~C, the amount of g' (A13Li), GP zones/0' (A12Cu) and Z (A15Cu6Li2) phases is obviously higher than that of T1 (A12CuLi) precipitates; while the samples peak aged at 160 and 200 ~C are usually dominated by T1 phase with a minor fraction of GP zones/0' and g', and the Z phase almost does not form. In addition, quantitative analysis on the T1 platelets demonstrates that the samples peak aged at 200 ~C have larger plate diameter and smaller area fraction of T1, as compared to the samples peak aged at 160 ~C. Correspondingly, the possible reasons for such phenomena are discussed.展开更多
The microstructure,mechanical properties and flame resistance behavior of the AZ91−1Ce alloys with different Ca additions were firstly investigated.Then,the effect of processing parameters,including applied pressures ...The microstructure,mechanical properties and flame resistance behavior of the AZ91−1Ce alloys with different Ca additions were firstly investigated.Then,the effect of processing parameters,including applied pressures and rotation speeds,on the microstructure and mechanical properties of the rheo-squeeze casting AZ91−1Ce−2Ca alloy was studied.The results indicate that with the increase of Ca content,the microstructure is refined and the flame resistance of the AZ91−1Ce−xCa alloys increases.But when the Ca content exceeds 1 wt.%,with the Ca content increasing,the mechanical properties of the AZ91−1Ce−xCa alloys reduce rapidly.For rheo-squeeze casting process,the increase of applied pressure and rotation speed can both bring about significant refinement in the microstructure of the AZ91−1Ce−2Ca alloy and reduction of the porosity,so the mechanical properties increase.Compared to conventional casting,the AZ91−1Ce alloy with the addition of 2 wt.%Ca by rheo-squeeze casting not only guarantees the oxidation resistance(801℃),but also improves mechanical properties.展开更多
AZ61 alloys with different levels of Al5Ti1B master alloy additions were prepared by conventional casting method.The effects of Al5Ti1B contents and holding time on microstructures and microhardness of AZ61 alloys wer...AZ61 alloys with different levels of Al5Ti1B master alloy additions were prepared by conventional casting method.The effects of Al5Ti1B contents and holding time on microstructures and microhardness of AZ61 alloys were studied by XRD,OM and microhardness testing techniques.The results show that when the addition level of Al5Ti1B master alloy is less than 0.5%(mass fraction),the average grain size of the alloys decreases with the increase of Al5Ti1B content at the same holding time.But the grain size increases somewhat with further addition of Al5Ti1B.The average grain size of the alloys decreases with the increase of the holding time as it is less than 30 min at the same addition level of Al5Ti1B.It is considered that TiB2 particles can serve as the heterogeneous nucleation sites ofα-Mg during solidification,and heterogeneous nucleation is the main reason for the grain refinement of AZ61 alloys.The microhardness of the refined AZ61 alloys with 1.0%Al5Ti1B addition is increased by about 8%.展开更多
Mg-8Sn-1Al-1Zn-xNi(x=0.5%, 1.0%, 1.5%, 2.0%, mass fraction) alloys were designed and prepared. The microstructures and the mechanical properties were studied by using optical microscope, scanning electronic microscope...Mg-8Sn-1Al-1Zn-xNi(x=0.5%, 1.0%, 1.5%, 2.0%, mass fraction) alloys were designed and prepared. The microstructures and the mechanical properties were studied by using optical microscope, scanning electronic microscope, energy dispersive X-ray spectroscope, X-ray diffraction and a standard universal testing machine. The results show that the microstructure of Ni-containing alloys consist of α-Mg, Mg2 Sn, β-Mg-Ni-Al and γ-AlNi phases. No β-Mg-Ni-Al phase was observed in TAZ811-2.0Ni alloy due to its 1:1 atomic ratio of Ni/Al. The addition of Ni refines the α-Mg dendrites and suppresses the formation of coarse Mg2 Sn phase. The tensile properties results show that the TAZ811-0.5Ni alloy presented the best mechanical properties, which is due to the rod-like β-Mg-Ni-Al phase, refined α-Mg dendrites and Mg2 Sn phase, as well as γ-AlNi phase. The tensile fracture mechanism transits from cleavage to quasi-cleavage fracture with the increasing Ni addition.展开更多
The natural passive films forrned on Fe_(40)Ni_(40)P_(14)B_6 and Fe_(54.6)Ni_(38)Si_(4.1)B_(2.3)V_1 amorphous alloys long-term exposed in air have been studied by X-ray photoelectron spectroscopy (XPS) and Auger elect...The natural passive films forrned on Fe_(40)Ni_(40)P_(14)B_6 and Fe_(54.6)Ni_(38)Si_(4.1)B_(2.3)V_1 amorphous alloys long-term exposed in air have been studied by X-ray photoelectron spectroscopy (XPS) and Auger electron (including Ar+ ion depth profiling) spectroscopy (AES). The following aspects have been investigated: (1) chemical states of the elements in the films. binding energies and the chemical shifts measured by XPSf (2) structure and composition of the films fand (3) thickness of the passive films determined by AES depth profiling and XPS analysis.展开更多
This paper carries out first principles calculation of the structure, electronic and optical properties of BexZn1-xO alloys based on the density-functional theory for the compositions x = 0.0, 0.25, 0.5, 0.75, 1.0. Th...This paper carries out first principles calculation of the structure, electronic and optical properties of BexZn1-xO alloys based on the density-functional theory for the compositions x = 0.0, 0.25, 0.5, 0.75, 1.0. The lattice constants deviations of alloys obey Vegard's law well. The BexZn1-xO alloys have the direct band gap (Г-Г) character, and the bowing coefficients axe less than the available theoretical values. Moreover, it investigates in detail the optical properties (dielectric functions, absorption spectrum and refractive index) of these ternary mixed crystals. The obtained results agree well with the available theoretical and experimental values.展开更多
The electronic band structure of GaxIn1-xAs alloy is calculated by using the local empirical pseudo-potential method including the effective disorder potential in the virtual crystal approximation. The compositional e...The electronic band structure of GaxIn1-xAs alloy is calculated by using the local empirical pseudo-potential method including the effective disorder potential in the virtual crystal approximation. The compositional effect of the electronic energy band structure of this alloy is studied with composition x ranging from 0 to 1. Various physical quantities such as band gaps, bowing parameters, refractive indices, and high frequency dielectric constants of the considered alloys with different Ga concentrations are calculated. The effects of both temperature and hydrostatic pressure on the calculated quantities are studied. The obtained results are found to be in good agreement with the available experimental and published data.展开更多
Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys(x=3−5,wt.%)were investigated.As Mg content increased in the as-cast alloys,the grains were refined ...Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys(x=3−5,wt.%)were investigated.As Mg content increased in the as-cast alloys,the grains were refined due to enhanced growth restriction,and the formation ofη-Mg(AlZnCu)_(2) and S-Al_(2)CuMg phases was inhibited while the formation of T-Mg_(32)(AlZnCu)_(49 )phase was promoted when Mg content exceeded 4 wt.%.The increase of Mg content encumbered the solution kinetics by increasing the size of eutectic phase but accelerated and enhanced the age-hardening through expediting precipitation kinetics and elevating the number density of the precipitates.As Mg content increased,the yield strength and tensile strength of the as-cast,solution-treated and peak-aged alloys were severally improved,while the elongation of the alloys decreased.The tensile strength and elongation of the peak-aged Al−5Mg−3Zn−1Cu alloy exceed 500 MPa and 5%,respectively.Precipitation strengthening implemented by T′precipitates is the predominant strengthening mechanism in the peak-aged alloys and is enhanced by increasing Mg content.展开更多
Super-high pressure(SHP)technique plays an increasing role in the fields of materials science and engineering.Herein,the Mg_(97)Zn_(1)Y_(2) alloy was heat-treated under SHP(6 GPa)by cubic-anvil large-volume press with...Super-high pressure(SHP)technique plays an increasing role in the fields of materials science and engineering.Herein,the Mg_(97)Zn_(1)Y_(2) alloy was heat-treated under SHP(6 GPa)by cubic-anvil large-volume press with six rams for 2 h in the temperature range of 500–1200℃.The microstructure and mechanical properties were investigated.The results indicated that the as-cast sample consists of α-Mg equiaxed dendrites and continuous lamellar long period stacking ordered(LPSO)phase in grain boundaries.After the SHP treatment,the LPSO phase is gradually replaced by eutectic phase(Mg,Zn)_(3)Y with increasing temperature.The microhardness and strength of sample prepared at 1100℃ under SHP treatment are significantly improved compared with the as-cast one at room temperature.The improved mechanical behaviors are mainly attributed to LPSO phase kink-banding strengthening at low temperature and the precipitation strengthening of a large amount of fine(Mg,Zn)_(3)Y particles at high temperature after SHP treatment.It reveals the SHP is an effective approach to prepare high performance Mg alloys.展开更多
The behavior of growth and coarsening of T-1(Al2CuLi) precipitates was comparatively studied by means of TEM technique in two Al-Li alloys 2090 and 2090+Ce (with cerium content less than 0.1% in mass fraction). Statis...The behavior of growth and coarsening of T-1(Al2CuLi) precipitates was comparatively studied by means of TEM technique in two Al-Li alloys 2090 and 2090+Ce (with cerium content less than 0.1% in mass fraction). Statistical analysis results show that T-1 precipitates in alloy 2090+Ce have smaller aspect ratio, which is connected with the more intersections between different T-1 variants in this alloy. It is also found that the variation of maximum length of T-1 precipitates with aging time can be obviously divided into two stages of growth and coarsening. The diffusion coefficients of solute atoms of Cu and Li are calculated via growth kinetics curves of T-1 precipitates. The results show that the diffusion of atom Cu plays a more important role in the formation of T-1 precipitates.展开更多
The Curie temperature increases but crystallization temperature decreases with the in- crease of Ga content,x,of amorphous(Fe_(1-x)Ga_x)_(77.5)Nd_4B_(18.5) alloys.The average magnetic moment of Fe atoms is almost a co...The Curie temperature increases but crystallization temperature decreases with the in- crease of Ga content,x,of amorphous(Fe_(1-x)Ga_x)_(77.5)Nd_4B_(18.5) alloys.The average magnetic moment of Fe atoms is almost a constant.By X-ray diffraction and ther- momagnetic measurements,the crystalline phases of the alloys,an unknown phase and α-(Fe,Ga)besides Fe_3 B as major one,were identified.The relationship between room temperature coercive field and Ga.content was also studied.展开更多
Al5Ti1B master alloy was produced by two-step method. Experimental results show that the structure of Al5TilB master alloy depends on that of AlTi and AlB master alloys, the morphologies of TiAl3 depend on AlTi master...Al5Ti1B master alloy was produced by two-step method. Experimental results show that the structure of Al5TilB master alloy depends on that of AlTi and AlB master alloys, the morphologies of TiAl3 depend on AlTi master alloy and the boride phases depend on AlB master alloy. There are remarkable structure heredity between Al5Ti1B master alloy and AlTi, AlB master alloys. Theoretical analyses show that AlTi and Al-B master alloys can change the melt structure of Al5Ti1B master alloy, then affect the solid structure of the master alloy.展开更多
基金Project supported by Beijing Natural Science Foundation (Grant No.Z200005)the National Key R&D Program of China (Grant Nos.2018YFE0202600 and 2022YFA1403800)+1 种基金the National Natural Science Foundation of China (Grant No.12274459)Beijing National Laboratory for Condensed Matter Physics,and Collaborative Research Project of Laboratory for Materials and Structures,Institute of Innovative Research,Tokyo Institute of Technology。
文摘We report the detailed crystal structures and physical properties of Ru_(1-x)Mo_(x)alloys in the solid solution range of x=0.1-0.9.Structure characterizations indicate that the crystal structure changes from the hcp-Mg-type,toβ-CrFe-type,and then bcc-W-type.The measurements of physical properties show that the Ru_(1-x)Mo_(x)samples with x≥0.2are superconductors and the superconducting transition temperature T_c as a function of Mo content exhibits a dome-like behavior.
基金Project(50725413)supported by the National Natural Science Foundation of ChinaProject(2010CSTC-BJLKR)supported by Chongqing Science and Technology Commission, ChinaProject(CDJXS10132203)supported by the Fundamental Research Funds for the Central Universities,China
文摘Mg-14Li-1Al (LA141), LA141-0.3Y, LA141-0.3Sr, and LA141-0.3Y-0.3Sr alloys were prepared in an induction furnace in the argon atmosphere. The microstructures of these alloys were investigated through scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive spectrometer (EDS). The results show that yttrium and/or strontium additions produce a strong grain refining effect in LA141 alloy. The mean grain sizes of the alloys with addition of Y and/or Sr are reduced remarkably from 600 to 500, 260, 230 μm, respectively. Al 2 Y, Al 4 Sr and Mg 17 Sr 2 phases with different morphologies are verified and exist inside the grain or at the grain boundaries, thus possibly act as heterogeneous nucleation sites and pin up grain boundaries, which restrain the grain growth.
基金Project(10KJB430012) supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of ChinaProject (BK2011063) supported by the Nantong Science and Technology Commission of China
文摘The microstructural characteristics, mechanical properties and creep resistance of Mg-(8%-12%) Zn-(2%-6%) A1 alloys were investigated to get a better overall understanding of these series alloys. The results indicate that the microstructure of the alloys ZA82, ZA102 and ZA122 with the mass ratio of Zn to A1 of 4-6 is mainly composed of a-Mg matrix and two different morphologies of precipitates (block τ-Mg32(Al, Zn)49 and dense lamellar ε-Mg51Zn20), the alloys ZA84, ZA104 and ZA124 with the mass ratio of 2-3 contain α-Mg matrix and only block r phases, and the alloys ZA86, ZA106 and ZA126 with the mass ratio of 1-2 consist of a-Mg matrix, block r precipitates, lamellar Ф-Al2Mg5Zn2 eutectics and flocculent β-Mg17Al12 compounds. The alloys studied with the mass ratio of Zn to A1 of 2-3 exhibit high creep resistance, and the alloy ZA124 with the continuous network of r precipitating along grain boundaries shows the highest creep resistance.
基金Project(51176050)supported by the National Natural Science Foundation of ChinaProject(12ZB073)supported by the Research Projects in Sichuan Province Education Office,China
文摘The effect of Ce, Co, and B on the formation of 1:13 phase in La(Fe, Si)13 alloys was investigated by XRD, SEM and EDS. The results show that Co can improve the formation of 1:13 phase in as-cast LaFe11.6-xCoxSi1.4 alloys, but in as-cast and annealed LaFe11.6Si1.4-xCox alloys, it will hamper the formation of 1:13 phase and help the formation of a-Fe(Co, Si) solid solution. Ce2Fel7 phases will form when x reaches a certain value in as-cast and annealed La1-xCexFe11.5Si1.5 alloys. B can improve the formation of 1:13 phase accompanied with Fe2B phase in as-cast LaFe11.6-xBxSi1.4 alloys. B improves the formation of a-Fe solid solution in LaFe11.6Si1.4-xBx alloys, and there is almost only a-Fe in as-cast and annealed LaFe11.6Si0.9B0.5 alloy. In all, the introduction of Co, B, and Ce cannot eliminate the a-Fe phases in corresponding alloys prepared by the high-temperature and short-time annealing process.
基金Project(50401012) supported by the National Natural Science Foundation of China
文摘To clarify the corrosion mechanism associated with the precipitate of T1(Al2CuLi)in Al-Li alloys,the simulated bulk precipitate of T1 was fabricated through melting and casting.Its electrochemical behavior and coupling behavior with α(Al)in 3.5% NaCl solution were investigated.Meanwhile,the simulated Al alloy containing T1 particle was prepared and its corrosion morphology was observed.The results show that there exists a dynamic conversion corrosion mechanism associated with the precipitate of T1.At the beginning,the precipitate of T1 is anodic to the alloy base and corrosion occurs on its surface.However,during its corrosion process,its potential moves to a positive direction with immersion time increasing,due to the preferential dissolution of Li and the enrichment of Cu.As a result,the corroded T1 becomes cathodic to the alloy base at a later stage,leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery.It is suggested that the localized corrosion associated with the precipitate of T1 in Al-Li alloys is caused by the alternate anodic dissolution of the T1 precipitate and the alloy base at its adjacent periphery.
基金supported by the Science and Technology Payoffs Transformation Program of Jiangsu Province (DA2006034)the Program of National College Student Creative Experiment (081053309)
文摘The corrosion behavior of BFe10-1-1 alloy with different rare earth (RE) contents in simulated flowing marine water was investigated by X-ray diffractometer and scanning electron microscope (SEM). It was demonstrated that the corrosion rate of BFel0-1-1 alloy with the same chemical compositions in faster flow velocity of marine water was higher than that in a lower flow velocity of marine water. Fixing the flow velocity, BFe 10-1-1 alloy had the best flushing corrosion resistance when the RE content was 0.04wt.%. The consequence of such good corrosion resistance was attributed to the formation of compact protective film on alloy surface containing RE phase such as CeNis. The RE-contained film combines with other corrosion products firmly, which was difficult to fall off from the alloy surface in the flowing marine water. Additionally, SEM analysis confirmed that pitting mechanism, which would be transformed to spalling mechanism gradually with further increasing RE content, was the prevalent mechanism when the alloy contained 0.04wt.%RE.
基金Project(2016YFB0300901) supported by the National Key R&D Program of China Project(51421001) supported by the National Natural Science Foundation of China Project(2018CDJDCL0019) supported by the Fundamental Research Funds for the Central Universities, China
文摘The precipitation behaviors of an A1-Cu-Li-Mn-Zr alloy at different ageing temperatures (120, 160 and 200 ~C) were investigated using Vickers hardness measurements and transmission electron microscopy (TEM) characterization. Age hardening curves show an increase in precipitation kinetics with increasing ageing temperature. The results of TEM show that for the samples peak aged at 120 ~C, the amount of g' (A13Li), GP zones/0' (A12Cu) and Z (A15Cu6Li2) phases is obviously higher than that of T1 (A12CuLi) precipitates; while the samples peak aged at 160 and 200 ~C are usually dominated by T1 phase with a minor fraction of GP zones/0' and g', and the Z phase almost does not form. In addition, quantitative analysis on the T1 platelets demonstrates that the samples peak aged at 200 ~C have larger plate diameter and smaller area fraction of T1, as compared to the samples peak aged at 160 ~C. Correspondingly, the possible reasons for such phenomena are discussed.
基金financial supports from National Natural Science Foundation of China(Nos.51775334,51771115,U2037601)Research Program of Joint Research Center of Advanced Spaceflight Technologies,China(No.USCAST2020-14)。
文摘The microstructure,mechanical properties and flame resistance behavior of the AZ91−1Ce alloys with different Ca additions were firstly investigated.Then,the effect of processing parameters,including applied pressures and rotation speeds,on the microstructure and mechanical properties of the rheo-squeeze casting AZ91−1Ce−2Ca alloy was studied.The results indicate that with the increase of Ca content,the microstructure is refined and the flame resistance of the AZ91−1Ce−xCa alloys increases.But when the Ca content exceeds 1 wt.%,with the Ca content increasing,the mechanical properties of the AZ91−1Ce−xCa alloys reduce rapidly.For rheo-squeeze casting process,the increase of applied pressure and rotation speed can both bring about significant refinement in the microstructure of the AZ91−1Ce−2Ca alloy and reduction of the porosity,so the mechanical properties increase.Compared to conventional casting,the AZ91−1Ce alloy with the addition of 2 wt.%Ca by rheo-squeeze casting not only guarantees the oxidation resistance(801℃),but also improves mechanical properties.
基金Project(2010RFQXG117)supported by the Special Fund for Technological Innovation Program of Harbin,China
文摘AZ61 alloys with different levels of Al5Ti1B master alloy additions were prepared by conventional casting method.The effects of Al5Ti1B contents and holding time on microstructures and microhardness of AZ61 alloys were studied by XRD,OM and microhardness testing techniques.The results show that when the addition level of Al5Ti1B master alloy is less than 0.5%(mass fraction),the average grain size of the alloys decreases with the increase of Al5Ti1B content at the same holding time.But the grain size increases somewhat with further addition of Al5Ti1B.The average grain size of the alloys decreases with the increase of the holding time as it is less than 30 min at the same addition level of Al5Ti1B.It is considered that TiB2 particles can serve as the heterogeneous nucleation sites ofα-Mg during solidification,and heterogeneous nucleation is the main reason for the grain refinement of AZ61 alloys.The microhardness of the refined AZ61 alloys with 1.0%Al5Ti1B addition is increased by about 8%.
基金Projects supported by the Shanxi Selective Funds for Returned Scholars,ChinaProject(2013021013-4)supported by the Shanxi Province Science Foundation for Youths China+1 种基金Projects(2012L053,2012L003)supported by the Taiyuan University of Technology Funds for Young Scientists,ChinaProject(2014021017-2)supported by the Natural Science Foundation for Young Scientists for Shanxi Province,China
文摘Mg-8Sn-1Al-1Zn-xNi(x=0.5%, 1.0%, 1.5%, 2.0%, mass fraction) alloys were designed and prepared. The microstructures and the mechanical properties were studied by using optical microscope, scanning electronic microscope, energy dispersive X-ray spectroscope, X-ray diffraction and a standard universal testing machine. The results show that the microstructure of Ni-containing alloys consist of α-Mg, Mg2 Sn, β-Mg-Ni-Al and γ-AlNi phases. No β-Mg-Ni-Al phase was observed in TAZ811-2.0Ni alloy due to its 1:1 atomic ratio of Ni/Al. The addition of Ni refines the α-Mg dendrites and suppresses the formation of coarse Mg2 Sn phase. The tensile properties results show that the TAZ811-0.5Ni alloy presented the best mechanical properties, which is due to the rod-like β-Mg-Ni-Al phase, refined α-Mg dendrites and Mg2 Sn phase, as well as γ-AlNi phase. The tensile fracture mechanism transits from cleavage to quasi-cleavage fracture with the increasing Ni addition.
文摘The natural passive films forrned on Fe_(40)Ni_(40)P_(14)B_6 and Fe_(54.6)Ni_(38)Si_(4.1)B_(2.3)V_1 amorphous alloys long-term exposed in air have been studied by X-ray photoelectron spectroscopy (XPS) and Auger electron (including Ar+ ion depth profiling) spectroscopy (AES). The following aspects have been investigated: (1) chemical states of the elements in the films. binding energies and the chemical shifts measured by XPSf (2) structure and composition of the films fand (3) thickness of the passive films determined by AES depth profiling and XPS analysis.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10974139 and 10964002)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20050610010)+1 种基金the Science-Technology Foundation of Guizhou Province of China (Grant Nos. [2009]2066,[2009]06 and [2010]2146)the Project of Aiding Elites’ Research Condition of Guizhou Province of China (Grant No. TZJF-2008-42)
文摘This paper carries out first principles calculation of the structure, electronic and optical properties of BexZn1-xO alloys based on the density-functional theory for the compositions x = 0.0, 0.25, 0.5, 0.75, 1.0. The lattice constants deviations of alloys obey Vegard's law well. The BexZn1-xO alloys have the direct band gap (Г-Г) character, and the bowing coefficients axe less than the available theoretical values. Moreover, it investigates in detail the optical properties (dielectric functions, absorption spectrum and refractive index) of these ternary mixed crystals. The obtained results agree well with the available theoretical and experimental values.
文摘The electronic band structure of GaxIn1-xAs alloy is calculated by using the local empirical pseudo-potential method including the effective disorder potential in the virtual crystal approximation. The compositional effect of the electronic energy band structure of this alloy is studied with composition x ranging from 0 to 1. Various physical quantities such as band gaps, bowing parameters, refractive indices, and high frequency dielectric constants of the considered alloys with different Ga concentrations are calculated. The effects of both temperature and hydrostatic pressure on the calculated quantities are studied. The obtained results are found to be in good agreement with the available experimental and published data.
基金supported by the National Natural Science Foundation of China (Nos. 51674166, U1902220)the National Key R&D Program of China (No. 2021YFB3701303)。
文摘Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys(x=3−5,wt.%)were investigated.As Mg content increased in the as-cast alloys,the grains were refined due to enhanced growth restriction,and the formation ofη-Mg(AlZnCu)_(2) and S-Al_(2)CuMg phases was inhibited while the formation of T-Mg_(32)(AlZnCu)_(49 )phase was promoted when Mg content exceeded 4 wt.%.The increase of Mg content encumbered the solution kinetics by increasing the size of eutectic phase but accelerated and enhanced the age-hardening through expediting precipitation kinetics and elevating the number density of the precipitates.As Mg content increased,the yield strength and tensile strength of the as-cast,solution-treated and peak-aged alloys were severally improved,while the elongation of the alloys decreased.The tensile strength and elongation of the peak-aged Al−5Mg−3Zn−1Cu alloy exceed 500 MPa and 5%,respectively.Precipitation strengthening implemented by T′precipitates is the predominant strengthening mechanism in the peak-aged alloys and is enhanced by increasing Mg content.
基金NSFC(51101142 and 50821001)New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0690)+1 种基金Hebei province scientific program(13961002D and Y2012019)Hebei Province Technology Foundation for Selected Overseas Chinese and Outstanding Young Scholar.
文摘Super-high pressure(SHP)technique plays an increasing role in the fields of materials science and engineering.Herein,the Mg_(97)Zn_(1)Y_(2) alloy was heat-treated under SHP(6 GPa)by cubic-anvil large-volume press with six rams for 2 h in the temperature range of 500–1200℃.The microstructure and mechanical properties were investigated.The results indicated that the as-cast sample consists of α-Mg equiaxed dendrites and continuous lamellar long period stacking ordered(LPSO)phase in grain boundaries.After the SHP treatment,the LPSO phase is gradually replaced by eutectic phase(Mg,Zn)_(3)Y with increasing temperature.The microhardness and strength of sample prepared at 1100℃ under SHP treatment are significantly improved compared with the as-cast one at room temperature.The improved mechanical behaviors are mainly attributed to LPSO phase kink-banding strengthening at low temperature and the precipitation strengthening of a large amount of fine(Mg,Zn)_(3)Y particles at high temperature after SHP treatment.It reveals the SHP is an effective approach to prepare high performance Mg alloys.
文摘The behavior of growth and coarsening of T-1(Al2CuLi) precipitates was comparatively studied by means of TEM technique in two Al-Li alloys 2090 and 2090+Ce (with cerium content less than 0.1% in mass fraction). Statistical analysis results show that T-1 precipitates in alloy 2090+Ce have smaller aspect ratio, which is connected with the more intersections between different T-1 variants in this alloy. It is also found that the variation of maximum length of T-1 precipitates with aging time can be obviously divided into two stages of growth and coarsening. The diffusion coefficients of solute atoms of Cu and Li are calculated via growth kinetics curves of T-1 precipitates. The results show that the diffusion of atom Cu plays a more important role in the formation of T-1 precipitates.
文摘The Curie temperature increases but crystallization temperature decreases with the in- crease of Ga content,x,of amorphous(Fe_(1-x)Ga_x)_(77.5)Nd_4B_(18.5) alloys.The average magnetic moment of Fe atoms is almost a constant.By X-ray diffraction and ther- momagnetic measurements,the crystalline phases of the alloys,an unknown phase and α-(Fe,Ga)besides Fe_3 B as major one,were identified.The relationship between room temperature coercive field and Ga.content was also studied.
文摘Al5Ti1B master alloy was produced by two-step method. Experimental results show that the structure of Al5TilB master alloy depends on that of AlTi and AlB master alloys, the morphologies of TiAl3 depend on AlTi master alloy and the boride phases depend on AlB master alloy. There are remarkable structure heredity between Al5Ti1B master alloy and AlTi, AlB master alloys. Theoretical analyses show that AlTi and Al-B master alloys can change the melt structure of Al5Ti1B master alloy, then affect the solid structure of the master alloy.