The effect of rare earth (RE) elements on the morphologies and sizes of Si phases in the hypereutectic A1-Si alloys modified with P was investigated. The results show that the addition of La element to the hypereute...The effect of rare earth (RE) elements on the morphologies and sizes of Si phases in the hypereutectic A1-Si alloys modified with P was investigated. The results show that the addition of La element to the hypereutectic A1-Si alloys can enhance the effect of P element on the modification of the primary Si phases. In the multiplex modification of RE-P, the primary Si phase is refiner and the shape of the eutectic Si is changed from long needle-like to short rod-like. Moreover, the agglomeration rate of the primary Si phase is slowed greatly. Even the melt is held for 6 h, the average size of the primary Si phase is still satisfied. The results analyzed by scanning electron microscope (SEM) indicate that La is richer at A1-Si interface than that in α-A1 or primary Si phase. The higher the La content in the A1-Si interface, the smaller the primary Si phase.展开更多
We report the detailed crystal structures and physical properties of Ru_(1-x)Mo_(x)alloys in the solid solution range of x=0.1-0.9.Structure characterizations indicate that the crystal structure changes from the hcp-M...We report the detailed crystal structures and physical properties of Ru_(1-x)Mo_(x)alloys in the solid solution range of x=0.1-0.9.Structure characterizations indicate that the crystal structure changes from the hcp-Mg-type,toβ-CrFe-type,and then bcc-W-type.The measurements of physical properties show that the Ru_(1-x)Mo_(x)samples with x≥0.2are superconductors and the superconducting transition temperature T_c as a function of Mo content exhibits a dome-like behavior.展开更多
We present results of an experimental study of magnetoresistance phenomenon in an amorphous silicon-nickel alloys a-Si1-yNiy:H:H (where y = 0.23) on the insulating side of the metal-insulator transition (MIT) in prese...We present results of an experimental study of magnetoresistance phenomenon in an amorphous silicon-nickel alloys a-Si1-yNiy:H:H (where y = 0.23) on the insulating side of the metal-insulator transition (MIT) in presence of magnetic field up to 4.5 T and at very low temperature. The electrical resistivity is found to follow the Efros-Shklovskii Variable Range Hopping regime (ES VRH) with T -1/2. This behaviour indicates the existence of the Coulomb gap (CG) near the Fermi level.展开更多
In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatm...In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatment.The purpose of this work is to investigate Al dross recycling by environmentally efficient and friendly methods.Two methods of Al dross recycling which could utilize Al dross efficiently were presented.High-quality aluminum-silicon alloys and brown fused alumina(BFA) were produced successfully by recycling Al dross.Then,life cycle assessment(LCA) was performed to evaluate environmental impact of two methods of Al dross recycling process.The results show that the two methods are reasonable and the average recovery rate of Al dross is up to 98%.As the LCA results indicate,they have some advantages such as less natural resource consumption and pollutant emissions,which efficiently relieves the burden on the environment in electrolytic aluminum and secondary aluminum industry.展开更多
Mg-14Li-1Al (LA141), LA141-0.3Y, LA141-0.3Sr, and LA141-0.3Y-0.3Sr alloys were prepared in an induction furnace in the argon atmosphere. The microstructures of these alloys were investigated through scanning electro...Mg-14Li-1Al (LA141), LA141-0.3Y, LA141-0.3Sr, and LA141-0.3Y-0.3Sr alloys were prepared in an induction furnace in the argon atmosphere. The microstructures of these alloys were investigated through scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive spectrometer (EDS). The results show that yttrium and/or strontium additions produce a strong grain refining effect in LA141 alloy. The mean grain sizes of the alloys with addition of Y and/or Sr are reduced remarkably from 600 to 500, 260, 230 μm, respectively. Al 2 Y, Al 4 Sr and Mg 17 Sr 2 phases with different morphologies are verified and exist inside the grain or at the grain boundaries, thus possibly act as heterogeneous nucleation sites and pin up grain boundaries, which restrain the grain growth.展开更多
The microstructural characteristics, mechanical properties and creep resistance of Mg-(8%-12%) Zn-(2%-6%) A1 alloys were investigated to get a better overall understanding of these series alloys. The results indic...The microstructural characteristics, mechanical properties and creep resistance of Mg-(8%-12%) Zn-(2%-6%) A1 alloys were investigated to get a better overall understanding of these series alloys. The results indicate that the microstructure of the alloys ZA82, ZA102 and ZA122 with the mass ratio of Zn to A1 of 4-6 is mainly composed of a-Mg matrix and two different morphologies of precipitates (block τ-Mg32(Al, Zn)49 and dense lamellar ε-Mg51Zn20), the alloys ZA84, ZA104 and ZA124 with the mass ratio of 2-3 contain α-Mg matrix and only block r phases, and the alloys ZA86, ZA106 and ZA126 with the mass ratio of 1-2 consist of a-Mg matrix, block r precipitates, lamellar Ф-Al2Mg5Zn2 eutectics and flocculent β-Mg17Al12 compounds. The alloys studied with the mass ratio of Zn to A1 of 2-3 exhibit high creep resistance, and the alloy ZA124 with the continuous network of r precipitating along grain boundaries shows the highest creep resistance.展开更多
The effect of Ce, Co, and B on the formation of 1:13 phase in La(Fe, Si)13 alloys was investigated by XRD, SEM and EDS. The results show that Co can improve the formation of 1:13 phase in as-cast LaFe11.6-xCoxSi1....The effect of Ce, Co, and B on the formation of 1:13 phase in La(Fe, Si)13 alloys was investigated by XRD, SEM and EDS. The results show that Co can improve the formation of 1:13 phase in as-cast LaFe11.6-xCoxSi1.4 alloys, but in as-cast and annealed LaFe11.6Si1.4-xCox alloys, it will hamper the formation of 1:13 phase and help the formation of a-Fe(Co, Si) solid solution. Ce2Fel7 phases will form when x reaches a certain value in as-cast and annealed La1-xCexFe11.5Si1.5 alloys. B can improve the formation of 1:13 phase accompanied with Fe2B phase in as-cast LaFe11.6-xBxSi1.4 alloys. B improves the formation of a-Fe solid solution in LaFe11.6Si1.4-xBx alloys, and there is almost only a-Fe in as-cast and annealed LaFe11.6Si0.9B0.5 alloy. In all, the introduction of Co, B, and Ce cannot eliminate the a-Fe phases in corresponding alloys prepared by the high-temperature and short-time annealing process.展开更多
To clarify the corrosion mechanism associated with the precipitate of T1(Al2CuLi)in Al-Li alloys,the simulated bulk precipitate of T1 was fabricated through melting and casting.Its electrochemical behavior and couplin...To clarify the corrosion mechanism associated with the precipitate of T1(Al2CuLi)in Al-Li alloys,the simulated bulk precipitate of T1 was fabricated through melting and casting.Its electrochemical behavior and coupling behavior with α(Al)in 3.5% NaCl solution were investigated.Meanwhile,the simulated Al alloy containing T1 particle was prepared and its corrosion morphology was observed.The results show that there exists a dynamic conversion corrosion mechanism associated with the precipitate of T1.At the beginning,the precipitate of T1 is anodic to the alloy base and corrosion occurs on its surface.However,during its corrosion process,its potential moves to a positive direction with immersion time increasing,due to the preferential dissolution of Li and the enrichment of Cu.As a result,the corroded T1 becomes cathodic to the alloy base at a later stage,leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery.It is suggested that the localized corrosion associated with the precipitate of T1 in Al-Li alloys is caused by the alternate anodic dissolution of the T1 precipitate and the alloy base at its adjacent periphery.展开更多
The corrosion behavior of BFe10-1-1 alloy with different rare earth (RE) contents in simulated flowing marine water was investigated by X-ray diffractometer and scanning electron microscope (SEM). It was demonstra...The corrosion behavior of BFe10-1-1 alloy with different rare earth (RE) contents in simulated flowing marine water was investigated by X-ray diffractometer and scanning electron microscope (SEM). It was demonstrated that the corrosion rate of BFel0-1-1 alloy with the same chemical compositions in faster flow velocity of marine water was higher than that in a lower flow velocity of marine water. Fixing the flow velocity, BFe 10-1-1 alloy had the best flushing corrosion resistance when the RE content was 0.04wt.%. The consequence of such good corrosion resistance was attributed to the formation of compact protective film on alloy surface containing RE phase such as CeNis. The RE-contained film combines with other corrosion products firmly, which was difficult to fall off from the alloy surface in the flowing marine water. Additionally, SEM analysis confirmed that pitting mechanism, which would be transformed to spalling mechanism gradually with further increasing RE content, was the prevalent mechanism when the alloy contained 0.04wt.%RE.展开更多
Laser surface cladding with Al-Si powders was applied to a Mg-6Zn-1Ca magnesium alloy to improve its surface properties.The microstructure,phase components and chemical compositions of the laser-clad layer were analyz...Laser surface cladding with Al-Si powders was applied to a Mg-6Zn-1Ca magnesium alloy to improve its surface properties.The microstructure,phase components and chemical compositions of the laser-clad layer were analyzed by using X-ray diffractometry(XRD),scanning electron microscopy(SEM)and energy dispersive spectrometry(EDS).The results show that the clad layer mainly consists ofα-Mg,Mg2Si dendrites,Mg17Al12and Al3Mg2phases.Owing to the formation of Mg2Si,Mg17Al12and Al3Mg2intermetallic compounds in the melted region and grain refinement,the microhardness of the clad layer(HV0.025310)is about5times higher than that of the substrate(HV0.02554).Besides,corrosion tests in the NaCl(3.5%,mass fraction)water solution show that the corrosion potential is increased from-1574.6mV for the untreated sample to-128.7mV for the laser-clad sample,while the corrosion current density is reduced from170.1to6.7μA/cm2.These results reveal that improved corrosion resistance and increased hardness of the Mg-6Zn-1Ca alloy can be both achieved after laser cladding with Al-Si powders.展开更多
The microstructure,mechanical properties and flame resistance behavior of the AZ91−1Ce alloys with different Ca additions were firstly investigated.Then,the effect of processing parameters,including applied pressures ...The microstructure,mechanical properties and flame resistance behavior of the AZ91−1Ce alloys with different Ca additions were firstly investigated.Then,the effect of processing parameters,including applied pressures and rotation speeds,on the microstructure and mechanical properties of the rheo-squeeze casting AZ91−1Ce−2Ca alloy was studied.The results indicate that with the increase of Ca content,the microstructure is refined and the flame resistance of the AZ91−1Ce−xCa alloys increases.But when the Ca content exceeds 1 wt.%,with the Ca content increasing,the mechanical properties of the AZ91−1Ce−xCa alloys reduce rapidly.For rheo-squeeze casting process,the increase of applied pressure and rotation speed can both bring about significant refinement in the microstructure of the AZ91−1Ce−2Ca alloy and reduction of the porosity,so the mechanical properties increase.Compared to conventional casting,the AZ91−1Ce alloy with the addition of 2 wt.%Ca by rheo-squeeze casting not only guarantees the oxidation resistance(801℃),but also improves mechanical properties.展开更多
AZ61 alloys with different levels of Al5Ti1B master alloy additions were prepared by conventional casting method.The effects of Al5Ti1B contents and holding time on microstructures and microhardness of AZ61 alloys wer...AZ61 alloys with different levels of Al5Ti1B master alloy additions were prepared by conventional casting method.The effects of Al5Ti1B contents and holding time on microstructures and microhardness of AZ61 alloys were studied by XRD,OM and microhardness testing techniques.The results show that when the addition level of Al5Ti1B master alloy is less than 0.5%(mass fraction),the average grain size of the alloys decreases with the increase of Al5Ti1B content at the same holding time.But the grain size increases somewhat with further addition of Al5Ti1B.The average grain size of the alloys decreases with the increase of the holding time as it is less than 30 min at the same addition level of Al5Ti1B.It is considered that TiB2 particles can serve as the heterogeneous nucleation sites ofα-Mg during solidification,and heterogeneous nucleation is the main reason for the grain refinement of AZ61 alloys.The microhardness of the refined AZ61 alloys with 1.0%Al5Ti1B addition is increased by about 8%.展开更多
Mg-8Sn-1Al-1Zn-xNi(x=0.5%, 1.0%, 1.5%, 2.0%, mass fraction) alloys were designed and prepared. The microstructures and the mechanical properties were studied by using optical microscope, scanning electronic microscope...Mg-8Sn-1Al-1Zn-xNi(x=0.5%, 1.0%, 1.5%, 2.0%, mass fraction) alloys were designed and prepared. The microstructures and the mechanical properties were studied by using optical microscope, scanning electronic microscope, energy dispersive X-ray spectroscope, X-ray diffraction and a standard universal testing machine. The results show that the microstructure of Ni-containing alloys consist of α-Mg, Mg2 Sn, β-Mg-Ni-Al and γ-AlNi phases. No β-Mg-Ni-Al phase was observed in TAZ811-2.0Ni alloy due to its 1:1 atomic ratio of Ni/Al. The addition of Ni refines the α-Mg dendrites and suppresses the formation of coarse Mg2 Sn phase. The tensile properties results show that the TAZ811-0.5Ni alloy presented the best mechanical properties, which is due to the rod-like β-Mg-Ni-Al phase, refined α-Mg dendrites and Mg2 Sn phase, as well as γ-AlNi phase. The tensile fracture mechanism transits from cleavage to quasi-cleavage fracture with the increasing Ni addition.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.50075051)
文摘The effect of rare earth (RE) elements on the morphologies and sizes of Si phases in the hypereutectic A1-Si alloys modified with P was investigated. The results show that the addition of La element to the hypereutectic A1-Si alloys can enhance the effect of P element on the modification of the primary Si phases. In the multiplex modification of RE-P, the primary Si phase is refiner and the shape of the eutectic Si is changed from long needle-like to short rod-like. Moreover, the agglomeration rate of the primary Si phase is slowed greatly. Even the melt is held for 6 h, the average size of the primary Si phase is still satisfied. The results analyzed by scanning electron microscope (SEM) indicate that La is richer at A1-Si interface than that in α-A1 or primary Si phase. The higher the La content in the A1-Si interface, the smaller the primary Si phase.
基金Project supported by Beijing Natural Science Foundation (Grant No.Z200005)the National Key R&D Program of China (Grant Nos.2018YFE0202600 and 2022YFA1403800)+1 种基金the National Natural Science Foundation of China (Grant No.12274459)Beijing National Laboratory for Condensed Matter Physics,and Collaborative Research Project of Laboratory for Materials and Structures,Institute of Innovative Research,Tokyo Institute of Technology。
文摘We report the detailed crystal structures and physical properties of Ru_(1-x)Mo_(x)alloys in the solid solution range of x=0.1-0.9.Structure characterizations indicate that the crystal structure changes from the hcp-Mg-type,toβ-CrFe-type,and then bcc-W-type.The measurements of physical properties show that the Ru_(1-x)Mo_(x)samples with x≥0.2are superconductors and the superconducting transition temperature T_c as a function of Mo content exhibits a dome-like behavior.
文摘We present results of an experimental study of magnetoresistance phenomenon in an amorphous silicon-nickel alloys a-Si1-yNiy:H:H (where y = 0.23) on the insulating side of the metal-insulator transition (MIT) in presence of magnetic field up to 4.5 T and at very low temperature. The electrical resistivity is found to follow the Efros-Shklovskii Variable Range Hopping regime (ES VRH) with T -1/2. This behaviour indicates the existence of the Coulomb gap (CG) near the Fermi level.
基金Project(07dz12028) supported by the Science Program of Science and Technology Commission of Shanghai Municipality,China
文摘In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatment.The purpose of this work is to investigate Al dross recycling by environmentally efficient and friendly methods.Two methods of Al dross recycling which could utilize Al dross efficiently were presented.High-quality aluminum-silicon alloys and brown fused alumina(BFA) were produced successfully by recycling Al dross.Then,life cycle assessment(LCA) was performed to evaluate environmental impact of two methods of Al dross recycling process.The results show that the two methods are reasonable and the average recovery rate of Al dross is up to 98%.As the LCA results indicate,they have some advantages such as less natural resource consumption and pollutant emissions,which efficiently relieves the burden on the environment in electrolytic aluminum and secondary aluminum industry.
基金Project(50725413)supported by the National Natural Science Foundation of ChinaProject(2010CSTC-BJLKR)supported by Chongqing Science and Technology Commission, ChinaProject(CDJXS10132203)supported by the Fundamental Research Funds for the Central Universities,China
文摘Mg-14Li-1Al (LA141), LA141-0.3Y, LA141-0.3Sr, and LA141-0.3Y-0.3Sr alloys were prepared in an induction furnace in the argon atmosphere. The microstructures of these alloys were investigated through scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive spectrometer (EDS). The results show that yttrium and/or strontium additions produce a strong grain refining effect in LA141 alloy. The mean grain sizes of the alloys with addition of Y and/or Sr are reduced remarkably from 600 to 500, 260, 230 μm, respectively. Al 2 Y, Al 4 Sr and Mg 17 Sr 2 phases with different morphologies are verified and exist inside the grain or at the grain boundaries, thus possibly act as heterogeneous nucleation sites and pin up grain boundaries, which restrain the grain growth.
基金Project(10KJB430012) supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of ChinaProject (BK2011063) supported by the Nantong Science and Technology Commission of China
文摘The microstructural characteristics, mechanical properties and creep resistance of Mg-(8%-12%) Zn-(2%-6%) A1 alloys were investigated to get a better overall understanding of these series alloys. The results indicate that the microstructure of the alloys ZA82, ZA102 and ZA122 with the mass ratio of Zn to A1 of 4-6 is mainly composed of a-Mg matrix and two different morphologies of precipitates (block τ-Mg32(Al, Zn)49 and dense lamellar ε-Mg51Zn20), the alloys ZA84, ZA104 and ZA124 with the mass ratio of 2-3 contain α-Mg matrix and only block r phases, and the alloys ZA86, ZA106 and ZA126 with the mass ratio of 1-2 consist of a-Mg matrix, block r precipitates, lamellar Ф-Al2Mg5Zn2 eutectics and flocculent β-Mg17Al12 compounds. The alloys studied with the mass ratio of Zn to A1 of 2-3 exhibit high creep resistance, and the alloy ZA124 with the continuous network of r precipitating along grain boundaries shows the highest creep resistance.
基金Project(51176050)supported by the National Natural Science Foundation of ChinaProject(12ZB073)supported by the Research Projects in Sichuan Province Education Office,China
文摘The effect of Ce, Co, and B on the formation of 1:13 phase in La(Fe, Si)13 alloys was investigated by XRD, SEM and EDS. The results show that Co can improve the formation of 1:13 phase in as-cast LaFe11.6-xCoxSi1.4 alloys, but in as-cast and annealed LaFe11.6Si1.4-xCox alloys, it will hamper the formation of 1:13 phase and help the formation of a-Fe(Co, Si) solid solution. Ce2Fel7 phases will form when x reaches a certain value in as-cast and annealed La1-xCexFe11.5Si1.5 alloys. B can improve the formation of 1:13 phase accompanied with Fe2B phase in as-cast LaFe11.6-xBxSi1.4 alloys. B improves the formation of a-Fe solid solution in LaFe11.6Si1.4-xBx alloys, and there is almost only a-Fe in as-cast and annealed LaFe11.6Si0.9B0.5 alloy. In all, the introduction of Co, B, and Ce cannot eliminate the a-Fe phases in corresponding alloys prepared by the high-temperature and short-time annealing process.
基金Project(50401012) supported by the National Natural Science Foundation of China
文摘To clarify the corrosion mechanism associated with the precipitate of T1(Al2CuLi)in Al-Li alloys,the simulated bulk precipitate of T1 was fabricated through melting and casting.Its electrochemical behavior and coupling behavior with α(Al)in 3.5% NaCl solution were investigated.Meanwhile,the simulated Al alloy containing T1 particle was prepared and its corrosion morphology was observed.The results show that there exists a dynamic conversion corrosion mechanism associated with the precipitate of T1.At the beginning,the precipitate of T1 is anodic to the alloy base and corrosion occurs on its surface.However,during its corrosion process,its potential moves to a positive direction with immersion time increasing,due to the preferential dissolution of Li and the enrichment of Cu.As a result,the corroded T1 becomes cathodic to the alloy base at a later stage,leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery.It is suggested that the localized corrosion associated with the precipitate of T1 in Al-Li alloys is caused by the alternate anodic dissolution of the T1 precipitate and the alloy base at its adjacent periphery.
基金supported by the Science and Technology Payoffs Transformation Program of Jiangsu Province (DA2006034)the Program of National College Student Creative Experiment (081053309)
文摘The corrosion behavior of BFe10-1-1 alloy with different rare earth (RE) contents in simulated flowing marine water was investigated by X-ray diffractometer and scanning electron microscope (SEM). It was demonstrated that the corrosion rate of BFel0-1-1 alloy with the same chemical compositions in faster flow velocity of marine water was higher than that in a lower flow velocity of marine water. Fixing the flow velocity, BFe 10-1-1 alloy had the best flushing corrosion resistance when the RE content was 0.04wt.%. The consequence of such good corrosion resistance was attributed to the formation of compact protective film on alloy surface containing RE phase such as CeNis. The RE-contained film combines with other corrosion products firmly, which was difficult to fall off from the alloy surface in the flowing marine water. Additionally, SEM analysis confirmed that pitting mechanism, which would be transformed to spalling mechanism gradually with further increasing RE content, was the prevalent mechanism when the alloy contained 0.04wt.%RE.
基金Project(2016YBF0701205) supported by the National Key Research and Development Program of ChinaProjects(51271121,51471109) supported by the National Natural Science Foundation of ChinaProject(13KY0501) supported by Shanghai University of Engineering Science Innovation Fund for Graduate Students,China
文摘Laser surface cladding with Al-Si powders was applied to a Mg-6Zn-1Ca magnesium alloy to improve its surface properties.The microstructure,phase components and chemical compositions of the laser-clad layer were analyzed by using X-ray diffractometry(XRD),scanning electron microscopy(SEM)and energy dispersive spectrometry(EDS).The results show that the clad layer mainly consists ofα-Mg,Mg2Si dendrites,Mg17Al12and Al3Mg2phases.Owing to the formation of Mg2Si,Mg17Al12and Al3Mg2intermetallic compounds in the melted region and grain refinement,the microhardness of the clad layer(HV0.025310)is about5times higher than that of the substrate(HV0.02554).Besides,corrosion tests in the NaCl(3.5%,mass fraction)water solution show that the corrosion potential is increased from-1574.6mV for the untreated sample to-128.7mV for the laser-clad sample,while the corrosion current density is reduced from170.1to6.7μA/cm2.These results reveal that improved corrosion resistance and increased hardness of the Mg-6Zn-1Ca alloy can be both achieved after laser cladding with Al-Si powders.
基金financial supports from National Natural Science Foundation of China(Nos.51775334,51771115,U2037601)Research Program of Joint Research Center of Advanced Spaceflight Technologies,China(No.USCAST2020-14)。
文摘The microstructure,mechanical properties and flame resistance behavior of the AZ91−1Ce alloys with different Ca additions were firstly investigated.Then,the effect of processing parameters,including applied pressures and rotation speeds,on the microstructure and mechanical properties of the rheo-squeeze casting AZ91−1Ce−2Ca alloy was studied.The results indicate that with the increase of Ca content,the microstructure is refined and the flame resistance of the AZ91−1Ce−xCa alloys increases.But when the Ca content exceeds 1 wt.%,with the Ca content increasing,the mechanical properties of the AZ91−1Ce−xCa alloys reduce rapidly.For rheo-squeeze casting process,the increase of applied pressure and rotation speed can both bring about significant refinement in the microstructure of the AZ91−1Ce−2Ca alloy and reduction of the porosity,so the mechanical properties increase.Compared to conventional casting,the AZ91−1Ce alloy with the addition of 2 wt.%Ca by rheo-squeeze casting not only guarantees the oxidation resistance(801℃),but also improves mechanical properties.
基金Project(2010RFQXG117)supported by the Special Fund for Technological Innovation Program of Harbin,China
文摘AZ61 alloys with different levels of Al5Ti1B master alloy additions were prepared by conventional casting method.The effects of Al5Ti1B contents and holding time on microstructures and microhardness of AZ61 alloys were studied by XRD,OM and microhardness testing techniques.The results show that when the addition level of Al5Ti1B master alloy is less than 0.5%(mass fraction),the average grain size of the alloys decreases with the increase of Al5Ti1B content at the same holding time.But the grain size increases somewhat with further addition of Al5Ti1B.The average grain size of the alloys decreases with the increase of the holding time as it is less than 30 min at the same addition level of Al5Ti1B.It is considered that TiB2 particles can serve as the heterogeneous nucleation sites ofα-Mg during solidification,and heterogeneous nucleation is the main reason for the grain refinement of AZ61 alloys.The microhardness of the refined AZ61 alloys with 1.0%Al5Ti1B addition is increased by about 8%.
基金Projects supported by the Shanxi Selective Funds for Returned Scholars,ChinaProject(2013021013-4)supported by the Shanxi Province Science Foundation for Youths China+1 种基金Projects(2012L053,2012L003)supported by the Taiyuan University of Technology Funds for Young Scientists,ChinaProject(2014021017-2)supported by the Natural Science Foundation for Young Scientists for Shanxi Province,China
文摘Mg-8Sn-1Al-1Zn-xNi(x=0.5%, 1.0%, 1.5%, 2.0%, mass fraction) alloys were designed and prepared. The microstructures and the mechanical properties were studied by using optical microscope, scanning electronic microscope, energy dispersive X-ray spectroscope, X-ray diffraction and a standard universal testing machine. The results show that the microstructure of Ni-containing alloys consist of α-Mg, Mg2 Sn, β-Mg-Ni-Al and γ-AlNi phases. No β-Mg-Ni-Al phase was observed in TAZ811-2.0Ni alloy due to its 1:1 atomic ratio of Ni/Al. The addition of Ni refines the α-Mg dendrites and suppresses the formation of coarse Mg2 Sn phase. The tensile properties results show that the TAZ811-0.5Ni alloy presented the best mechanical properties, which is due to the rod-like β-Mg-Ni-Al phase, refined α-Mg dendrites and Mg2 Sn phase, as well as γ-AlNi phase. The tensile fracture mechanism transits from cleavage to quasi-cleavage fracture with the increasing Ni addition.