An A1GaN/GaN superlattice grown on the top of a GaN buffer induces the broadening of the full width at half maximum of (102) and (002) X-ray diffraction rocking curves. With an increase in the Si-doped concentrati...An A1GaN/GaN superlattice grown on the top of a GaN buffer induces the broadening of the full width at half maximum of (102) and (002) X-ray diffraction rocking curves. With an increase in the Si-doped concentration in the GaN wells, the full width at half maximum of the (102) rocking curves decreases, while that of the (002) rocking curves increases. A significant increase of the full width at the half maximum of the (002) rocking curves when the doping concentration reaches 2.5 × 10^19 cm-3 indicates the substantial increase of the inclined threading dislocation. High level doping in the A1GaN/GaN superlattice can greatly reduce the biaxial stress and optimize the surface roughness of the structures grown on the top of it.展开更多
CaN films with an AlxGa1-xN/AlyGa1-xN superlattice (SL) buffer layer are grown on Si(111) substrates by metal-organic chemical vapor deposition (MOCVD). The structure and strain properties of the samples are stu...CaN films with an AlxGa1-xN/AlyGa1-xN superlattice (SL) buffer layer are grown on Si(111) substrates by metal-organic chemical vapor deposition (MOCVD). The structure and strain properties of the samples are studied by optical microscopy, Raman spectroscopy, x-ray diffractometry and atomic force microscopy. The results show that the strain status and crystalline quality of the CaN layers are strongly dependent on the difference of the Al composition between AlxCa1-xN barriers and AlyCa1-yN wells in the SLs. With a large Al composition difference, the CaN film tends to generate cracks on the surface due to the severe relaxation of the SLs. Otherwise, when using a small Al composition difference, the crystalline quality of the CaN layer degrades due to the poor function of the SLs in filtering dislocations. Under an optimized condition that the Al composition difference equals 0.1, the crack-free and compressive strained CaN film with an improved crystalline quality is achieved. Therefore, the AlxGa1-xN/AlyGal-yN SL buffer layer is a promising buffer structure for growing thick CaN films on Si substrates without crack generation.展开更多
AlN/GaN superlattice buffer is inserted between GaN epitaxiai layer and Si substrate before epitaxiai growth of GaN layer. High-quality and crack-free GaN epitaxiai layers can be obtained by inserting AlN/GaN superlat...AlN/GaN superlattice buffer is inserted between GaN epitaxiai layer and Si substrate before epitaxiai growth of GaN layer. High-quality and crack-free GaN epitaxiai layers can be obtained by inserting AlN/GaN superlattice buffer layer. The influence of AlN/GaN superlattice buffer layer on the properties of GaN films are investigated in this paper. One of the important roles of the superlattice is to release tensile strain between Si substrate and epilayer. Raman spectra show a substantial decrease of in-plane tensile strain in GaN layers by using AlN/GaN superlattice buffer layer. Moreover, TEM cross-sectional images show that the densities of both screw and edge dislocations are significantly reduced. The GaN films grown on Si with the superlattice buffer also have better surface morphology and optical properties.展开更多
The efficiency enhancement of an InGaN light-emitting diode (LED) with an A1GaN/InGaN superlattice (SL) electron-blocking layer (EBL) is studied numerically, which involves the light-current performance curve, i...The efficiency enhancement of an InGaN light-emitting diode (LED) with an A1GaN/InGaN superlattice (SL) electron-blocking layer (EBL) is studied numerically, which involves the light-current performance curve, internal quan- tum efficiency electrostatic field band wavefunction, energy band diagram carrier concentration, electron current density, and radiative recombination rate. The simulation results indicate that the LED with an A1GaN/InGaN SL EBL has better optical performance than the LED with a conventional rectangular A1GaN EBL or a normal A1GaN/GaN SL EBL because of the appropriately modified energy band diagram, which is favorable ibr the injection of holes and confinement of elec- trons. Additionally, the efficiency droop of the LED with an AIGaN/InGaN SL EBL is markedly improved by reducing the polarization field in the active region.展开更多
P-A1GaN/P-GaN superlattices are investigated in blue InGaN light-emitting diodes as electron blocking layers. The simulation results show that efficiency droop is markedly improved due to two reasons: (i) enhanced ...P-A1GaN/P-GaN superlattices are investigated in blue InGaN light-emitting diodes as electron blocking layers. The simulation results show that efficiency droop is markedly improved due to two reasons: (i) enhanced hole concentration and hole carrier transport efficiency in A1GaN/GaN superlattices, and (ii) enhanced blocking of electron overflow between multiple quantum-wells and A1CaN/GaN superlattices.展开更多
Nonpolar a-plane GaN epilayers are grown on several r-plane sapphire substrates by metal organic chemical vapour deposition using different nucleation layers: (A) a CaN nucleation layer deposited at low temperature...Nonpolar a-plane GaN epilayers are grown on several r-plane sapphire substrates by metal organic chemical vapour deposition using different nucleation layers: (A) a CaN nucleation layer deposited at low temperature (LT); (B) an A1N nucleation layer deposited at high temperature; or (C) an LT thin AIN nucleation layer with an AIN layer and an A1N/A1CaN superlattice both subsequently deposited at high temperature. The samples have been characterized by Xray diffraction (XRD), atomic force microscopy and photoluminescence. The GaN layers grown using nucleation layers B and C show narrower XRD rocking curves than that using nucleation layer A, indicating a reduction in crystal defect density. Furthermore, the GaN layer grown using nucleation layer C exhibits a surface morphology with triangular defect pits eliminated completely. The improved optical property, corresponding to the enhanced crystal quality, is also confirmed by temperature-dependent and excitation power-dependent photoluminescence measurements.展开更多
AlGaN/GaN high electron mobility transistors(HEMTs) were grown on Si substrates by MOCVD.In the HEMT structure,a 1 μm GaN buffer layer was partially doped with Mg in an attempt to increase the resistivity and minimiz...AlGaN/GaN high electron mobility transistors(HEMTs) were grown on Si substrates by MOCVD.In the HEMT structure,a 1 μm GaN buffer layer was partially doped with Mg in an attempt to increase the resistivity and minimize the buffer leakage.The AlGaN/GaN HEMTs grown on undoped and partially Mg-doped GaN buffer layers were processed and the DC characteristics of the devices were characterized for comparing the effect of Mg doping.For the device with the partially Mg-doped GaN buffer layer,a lower drain leakage current density of 55.8 nA/mm,a lower gate leakage current density of 2.73 μA/mm,and a higher off-state breakdown voltage of 104 V were achieved with device dimensions Lg/Wg/Lgs/Lgd=1/10/1/1 μm,better than the device with the undoped GaN buffer layer,which has a higher drain leakage current density of 9.2 μA/mm,a higher gate leakage current density of 91.8 μA/mm,and a lower off-state breakdown voltage of 87 V with the same device dimensions.展开更多
The stresses, structural and electrical properties of n-type Si-doped GaN films grown by metaiorganic chemical vapor deposition (MOCVD) are systemically studied. It is suggested that the main stress relaxation is in...The stresses, structural and electrical properties of n-type Si-doped GaN films grown by metaiorganic chemical vapor deposition (MOCVD) are systemically studied. It is suggested that the main stress relaxation is induced by bending dislocations in low doping samples. But for higher doping samples, as the Si doping concentration increases, the in-plane stresses in the grown films are quickly relaxed due to the rapid increase of the edge dislocation densities. Hall effect measurements reveal that the carrier mobility first increases rapidly and then decreases with increasing Si doping concentration. This phenomenon is attributed to the interaction between various scattering process. It is suggested that the dominant scattering process is defect scattering for low doping samples and ionized impurity scattering for high doping samples.展开更多
基金Project supported by the National Key Science & Technology Special Project of China (Grant No. 2008ZX01002-002)the Major Program and State Key Program of National Natural Science Foundation of China (Grant No. 60890191)
文摘An A1GaN/GaN superlattice grown on the top of a GaN buffer induces the broadening of the full width at half maximum of (102) and (002) X-ray diffraction rocking curves. With an increase in the Si-doped concentration in the GaN wells, the full width at half maximum of the (102) rocking curves decreases, while that of the (002) rocking curves increases. A significant increase of the full width at the half maximum of the (002) rocking curves when the doping concentration reaches 2.5 × 10^19 cm-3 indicates the substantial increase of the inclined threading dislocation. High level doping in the A1GaN/GaN superlattice can greatly reduce the biaxial stress and optimize the surface roughness of the structures grown on the top of it.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61076120 and 61106130the Natural Science Foundation and Scientific Support Plan of Jiangsu Province under Grant Nos BK2012516,BK20131072,and BE2012007
文摘CaN films with an AlxGa1-xN/AlyGa1-xN superlattice (SL) buffer layer are grown on Si(111) substrates by metal-organic chemical vapor deposition (MOCVD). The structure and strain properties of the samples are studied by optical microscopy, Raman spectroscopy, x-ray diffractometry and atomic force microscopy. The results show that the strain status and crystalline quality of the CaN layers are strongly dependent on the difference of the Al composition between AlxCa1-xN barriers and AlyCa1-yN wells in the SLs. With a large Al composition difference, the CaN film tends to generate cracks on the surface due to the severe relaxation of the SLs. Otherwise, when using a small Al composition difference, the crystalline quality of the CaN layer degrades due to the poor function of the SLs in filtering dislocations. Under an optimized condition that the Al composition difference equals 0.1, the crack-free and compressive strained CaN film with an improved crystalline quality is achieved. Therefore, the AlxGa1-xN/AlyGal-yN SL buffer layer is a promising buffer structure for growing thick CaN films on Si substrates without crack generation.
文摘AlN/GaN superlattice buffer is inserted between GaN epitaxiai layer and Si substrate before epitaxiai growth of GaN layer. High-quality and crack-free GaN epitaxiai layers can be obtained by inserting AlN/GaN superlattice buffer layer. The influence of AlN/GaN superlattice buffer layer on the properties of GaN films are investigated in this paper. One of the important roles of the superlattice is to release tensile strain between Si substrate and epilayer. Raman spectra show a substantial decrease of in-plane tensile strain in GaN layers by using AlN/GaN superlattice buffer layer. Moreover, TEM cross-sectional images show that the densities of both screw and edge dislocations are significantly reduced. The GaN films grown on Si with the superlattice buffer also have better surface morphology and optical properties.
基金Project supported by the National Natural Science Foundation of China (Grant No.61176043)the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong,China (Grant Nos.2010A081002005,2011A081301003,and 2012A080304016)
文摘The efficiency enhancement of an InGaN light-emitting diode (LED) with an A1GaN/InGaN superlattice (SL) electron-blocking layer (EBL) is studied numerically, which involves the light-current performance curve, internal quan- tum efficiency electrostatic field band wavefunction, energy band diagram carrier concentration, electron current density, and radiative recombination rate. The simulation results indicate that the LED with an A1GaN/InGaN SL EBL has better optical performance than the LED with a conventional rectangular A1GaN EBL or a normal A1GaN/GaN SL EBL because of the appropriately modified energy band diagram, which is favorable ibr the injection of holes and confinement of elec- trons. Additionally, the efficiency droop of the LED with an AIGaN/InGaN SL EBL is markedly improved by reducing the polarization field in the active region.
基金Project supported by the Project of Combination of Production and Research Guided by Education Ministry of China in 2009(Grant No. 2009B090300338)the LED Industrial Projects of Special Funds Strategic Emerging Industries in 2011,Guangdong Province,China (Grant No. 2010A081002005)
文摘P-A1GaN/P-GaN superlattices are investigated in blue InGaN light-emitting diodes as electron blocking layers. The simulation results show that efficiency droop is markedly improved due to two reasons: (i) enhanced hole concentration and hole carrier transport efficiency in A1GaN/GaN superlattices, and (ii) enhanced blocking of electron overflow between multiple quantum-wells and A1CaN/GaN superlattices.
基金Project supported by the National Key Science & Technology Major Project of the Ministry of Science and Technology of China(Grant No. 2008ZX01002-002)the Major Program and the Key Program of the National Natural Science Foundation of China(Grant Nos. 60890191 and 60736033)
文摘Nonpolar a-plane GaN epilayers are grown on several r-plane sapphire substrates by metal organic chemical vapour deposition using different nucleation layers: (A) a CaN nucleation layer deposited at low temperature (LT); (B) an A1N nucleation layer deposited at high temperature; or (C) an LT thin AIN nucleation layer with an AIN layer and an A1N/A1CaN superlattice both subsequently deposited at high temperature. The samples have been characterized by Xray diffraction (XRD), atomic force microscopy and photoluminescence. The GaN layers grown using nucleation layers B and C show narrower XRD rocking curves than that using nucleation layer A, indicating a reduction in crystal defect density. Furthermore, the GaN layer grown using nucleation layer C exhibits a surface morphology with triangular defect pits eliminated completely. The improved optical property, corresponding to the enhanced crystal quality, is also confirmed by temperature-dependent and excitation power-dependent photoluminescence measurements.
文摘AlGaN/GaN high electron mobility transistors(HEMTs) were grown on Si substrates by MOCVD.In the HEMT structure,a 1 μm GaN buffer layer was partially doped with Mg in an attempt to increase the resistivity and minimize the buffer leakage.The AlGaN/GaN HEMTs grown on undoped and partially Mg-doped GaN buffer layers were processed and the DC characteristics of the devices were characterized for comparing the effect of Mg doping.For the device with the partially Mg-doped GaN buffer layer,a lower drain leakage current density of 55.8 nA/mm,a lower gate leakage current density of 2.73 μA/mm,and a higher off-state breakdown voltage of 104 V were achieved with device dimensions Lg/Wg/Lgs/Lgd=1/10/1/1 μm,better than the device with the undoped GaN buffer layer,which has a higher drain leakage current density of 9.2 μA/mm,a higher gate leakage current density of 91.8 μA/mm,and a lower off-state breakdown voltage of 87 V with the same device dimensions.
基金supported by the Major Program and Key Project of National Natural Science Foundation of China(Nos.60890191,60736033)the National Key S&T Special Project(No.2008ZX01002)
文摘The stresses, structural and electrical properties of n-type Si-doped GaN films grown by metaiorganic chemical vapor deposition (MOCVD) are systemically studied. It is suggested that the main stress relaxation is induced by bending dislocations in low doping samples. But for higher doping samples, as the Si doping concentration increases, the in-plane stresses in the grown films are quickly relaxed due to the rapid increase of the edge dislocation densities. Hall effect measurements reveal that the carrier mobility first increases rapidly and then decreases with increasing Si doping concentration. This phenomenon is attributed to the interaction between various scattering process. It is suggested that the dominant scattering process is defect scattering for low doping samples and ionized impurity scattering for high doping samples.