In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prep...In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The effects of adding Si on the structure and electrochemical hydrogen storage characteristics of the alloys were investigated systematically. The results indicate that the as-cast and annealed alloys hold multiple structures, involving two major phases of (La, Mg)2Ni7 with a Ce2Ni7-type hexagonal structure and LaNi5 with a CaCu5-type hexagonal structure as well as one residual phase LaNi3. The addition of Si results in a decrease in (La, Mg)2Ni7 phase and an increase in LaNi5 phase without changing the phase structure of the alloys. What is more, it brings on an obvious effect on electrochemical hydrogen storage characteristics of the alloys. The discharge capacities of the as-cast and annealed alloys decline with the increase of Si content, but their cycle stabilities clearly grow under the same condition. Furthermore, the measurements of the high rate discharge ability, the limiting current density, hydrogen diffusion coefficient as well as electrochemical impedance spectra all indicate that the electrochemical kinetic properties of the electrode alloys first increase and then decrease with the rising of Si content.展开更多
The casting and annealing technologies were applied to fabricate the La0.8Mg0.2Ni3.3Co0.2Six (x = 0-0.2) electrode alloys. The effects of Si content and annealing temperature on the structure and electrochemical per...The casting and annealing technologies were applied to fabricate the La0.8Mg0.2Ni3.3Co0.2Six (x = 0-0.2) electrode alloys. The effects of Si content and annealing temperature on the structure and electrochemical performances of the alloys were investigated systematically. The analyses of XRD and SEM show that all the alloys possess a multiphase structure, involving two main phases (La, Mg)2Ni7 and LaNi5 as well as a residual phase LaNi3. The addition of Si brings on an evident increase in the LaNi5 phase and a decrease in the (La, Mg)2Ni7 phase, without altering the main phase component of the alloy, which also makes the lattice constants and cell volumes of the alloy enlarged. Likewise, the annealing treatment engenders the same action on the lattice constants and cell volumes as adding Si. Simultaneously, it gives rise to the variation of the phase abundance and the coarsening of the alloy grains. The electrochemical measurements indicate that the addition of Si ameliorates the cycle stability of the as-cast and annealed alloys significantly, but impairs their discharge capacities clearly. Similarly, the annealing treatment makes a positive contribution to the cycle stability of the alloy evidently, and the discharge capacity of the alloy shows a maximum value with annealing temperature rising. Furthermore, the high rate discharge ability (HR) first augments and then declines with the rising of Si content and annealing temperature.展开更多
Investigation of alloy structure shows that La2-xMgxNi7 (x = 0.3 - 0.8) alloys are mainly com- posed of Ce/Ni7-type, Gd2Co7-type and PuNi3-type phase. The influence of Mg content in alloys on the phase structure is ...Investigation of alloy structure shows that La2-xMgxNi7 (x = 0.3 - 0.8) alloys are mainly com- posed of Ce/Ni7-type, Gd2Co7-type and PuNi3-type phase. The influence of Mg content in alloys on the phase structure is great, resulting in a linear decrease of the unit cell parameters of main phases and increase of hydrogen absorption/desorption plateau as Mg content increases. Electrochemical measurements show that as the Mg content increases, the discharge capacity of alloy electrodes first increases and then decreases. The cyclic stability presents a deteriorative trend. La1.4Mg0.6 Ni7 alloy electrode exhibits the maximum electrochemical discharge capacity (378 mAh·g^-1), and the La1.6Mg0.4Ni7 alloy electrode shows the best cyclic stability (S270 = 81%).展开更多
In order to improve the cyclic stability of La-Mg-Ni system (Ce2Ni7-type) alloy electrode, small amount of Co was added in La0.75Mg0.25Ni3.5 alloy. The effect of Co on electrochemical performance and microstructure ...In order to improve the cyclic stability of La-Mg-Ni system (Ce2Ni7-type) alloy electrode, small amount of Co was added in La0.75Mg0.25Ni3.5 alloy. The effect of Co on electrochemical performance and microstructure of the alloys were investigated in detail. XRD results showed that the alloys had multiphase structure composed of (La, Mg)2Ni7, LaNi5 and small amount of LaNi2 phases. The discharge capacity of the alloys first increased and then decreased with increasing Co content. At a discharge current density of 900 mA/g, the HRD of the alloy electrodes increased from 81.3% (x=0) to 89.2 % (x=0.2), and then reduced to 87.8 % (x=0.6). After 60 charge/discharge cycles, the capacity retention rate of the alloys enhanced from 52.67% to 61.32%, and the capacity decay rate of the alloys decreased from 2.60 to 2.05 mAh/g per cycle with increasing Co content. The obtained results by XPS and XRD showed that the fundamental reasons for the capacity decay of the La-Mg-Ni system (Ce2Ni7-type) alloy electrodes were corrosion and oxidation as well as passivation of Mg and Lain alkaline solution.展开更多
The partial substitution of Zr for La has been performed in order to ameliorate the electrochemical hydrogen storage performances of La–Mg–Ni based A2B7-type electrode alloys. The melt spinning technology was used t...The partial substitution of Zr for La has been performed in order to ameliorate the electrochemical hydrogen storage performances of La–Mg–Ni based A2B7-type electrode alloys. The melt spinning technology was used to prepare the La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1 (x=0, 0.05, 0.1, 0.15, 0.2) electrode alloys. The impacts of the melt spinning and the substituting La with Zr on the structures and the electrochemical hydrogen storage characteristics of the alloys were systemically investigated. The analysis of XRD and TEM reveals that the as-cast and spun alloys have a multiphase structure, composing of two main phases (La, Mg)2Ni7 and LaNi5 as well as a residual phase LaNi2. The electrochemical measurement indicates that both the substitution of Zr for La and the melt spinning ameliorate the electrochemical cycle stability of the alloys dramatically. Furthermore, the high rate discharge ability (HRD) of the as-spun (10 m/s) alloys notably declines with growing the amount of Zr substitution, while it first augments and then falls for the (x=0.1) alloy with rising the spinning rate.展开更多
In order to ameliorate the electrochemical hydrogen storage performances of La-Mg–Ni system A_2B_7-type electrode alloys, the partial substitution of M (M = Zr, Pr) for La was performed. The melt spinning technology ...In order to ameliorate the electrochemical hydrogen storage performances of La-Mg–Ni system A_2B_7-type electrode alloys, the partial substitution of M (M = Zr, Pr) for La was performed. The melt spinning technology was used to fabricate the La_(0.75-x)M_xMg_0.25Ni_3.2Co_0.2Al_0.1 (M = Zr, Pr; x = 0, 0.1) electrode alloys. The influences of the melt spinning and substituting La with M (M = Zr, Pr) on the structures and the electrochemical hydrogen storage characteristics of the alloys were investigated. The analysis of XRD, SEM, and TEM reveals that the as-cast and spun alloys have a multiphase structure composed of two main phases (La, Mg)_2Ni_7 and LaNi_5 as well as a residual phase LaNi_2 . The as-spun (M = Pr) alloy displays an entire nanocrystalline structure, while an amorphous-like structure is detected in the as-spun (M = Zr) alloy, implying that the substitution of Zr for La facilitates the amorphous formation. The electrochemical measurements exhibit that the substitution of Pr for La clearly increases the discharge capacity of the alloys; however, the Zr substitution brings on an adverse impact. Meanwhile, the M (M = Zr, Pr) substitution significantly enhances its cycle stability. The melt spinning exerts an evident effect on the electrochemical performances of the alloys, whose discharge capacity and high rate discharge ability (HRD) first mount up and then fall with the growing spinning rate, whereas their cycle stabilities monotonously augment as the spinning rate increases.展开更多
The La-Mg-Ni system A2B7-type electrode alloys with nominal composition La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1(x=0,0.05, 0.1,0.15,0.2)were prepared by casting and melt-spinning.The influences of melt spinning on the electro...The La-Mg-Ni system A2B7-type electrode alloys with nominal composition La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1(x=0,0.05, 0.1,0.15,0.2)were prepared by casting and melt-spinning.The influences of melt spinning on the electrochemical performances as well as the structures of the alloys were investigated.The results obtained by XRD,SEM and TEM show that the as-cast and spun alloys have a multiphase structure,consisting of two main phases(La,Mg)Ni3 and LaNi5 as well as a residual phase LaNi2.The melt spinning leads to an obvious increase of the LaNi5 phase and a decrease of the(La,Mg)Ni3 phase in the alloys.The results of the electrochemical measurement indicate that the discharge capacity of the alloys(x≤0.1)first increases and then decreases with the increase of spinning rate,whereas for x>0.1,the discharge capacity of the alloys monotonously falls.The melt spinning slightly impairs the activation capability of the alloys,but it significantly enhances the cycle stability of the alloys.展开更多
A novel approach based on thermal diffusion was used to achieve controllable Mg content in A_(2)B_(7)-type La-Mg-Ni-based alloys.The formation mechanism of the A_(2)B_(7)-type phase as a result of the thermal diffusio...A novel approach based on thermal diffusion was used to achieve controllable Mg content in A_(2)B_(7)-type La-Mg-Ni-based alloys.The formation mechanism of the A_(2)B_(7)-type phase as a result of the thermal diffusion process and the effect of Mg content on hydrogen storage performance were investigated.X-ray diffraction(XRD)patterns and Rietveld refinement results showed that increased Mg transformed the LaNi_(5)phase in the La_(0.74)Sm_(0.03)Y_(0.23)Ni_(4.32)Al_(0.04)precursor alloy into a superlattice structure.Scanning electron microscopy(SEM)images showed that Mg was evenly distributed in the alloy bulk.Mg in the superlattice significantly inhibited the phase decomposition of the superlattice structure during the hydrogen absorption/desorption cycles.An A_(2)B_(7)-type La_(0.57)Sm_(0.02)Y_(0.18)Mg_(0.23)Ni_(3.38)Al_(0.03)alloy composed of Gd_(2)Co_(7)and Ce_(2)Ni_(7)phases was successfully synthesized.The pressure-composition isotherm profiles showed that the alloy had a hydrogen storage capacity as high as 1.73 wt%,with good cycling stability.After 50 cycles of hydrogen absorption/desorption,the alloy retained a hydrogen storage capacity of 1.45 wt%,with a capacity retention rate of up to 84.28%.The Mg thermal diffusion process thus provides a new approach for the controlled preparation of La-Mg-Ni-based alloys.展开更多
Rare earth-based superlattice alloys have great potential for gaseous hydrogen storage,as well as successful application as nickel-metal hydride batteries anodes.In this work,Y substitution was carried out to adjust t...Rare earth-based superlattice alloys have great potential for gaseous hydrogen storage,as well as successful application as nickel-metal hydride batteries anodes.In this work,Y substitution was carried out to adjust the gaseous hydrogen storage properties of A_(2)B_(7)-type La_(0.7)Mg_(0.3)Ni_(3.5)alloys.The results indicate a multiphase structure in the alloys comprised of the main rhombohedral Gd_(2)Co_(7)and PuNi_(3)phases,with a small amount of CaCu_(5)phase.Moreover,the Y substitution results in higher abundance of the Gd_(2)Co_(7)phase.The alloy La_(0.42)Y_(0.28)Mg_(0.3)Ni_(3.5)exhibits a hydrogen storage cap acity of 1.55 wt%at 298 K and a desorption plateau pressure of 0.244 MPa.In addition,this alloy demonstrates a stable cycle life by a capacity retention of 94.2%after 50 cycles,with the main capacity degradation occurring during the initial 20 cycles.This work accentuates the potential of the La-Y-Mg-Ni-based superlattice alloys for applications in solid-state hydrogen storage.展开更多
To improve the cyclic stability of La-Mg-Ni system alloy, as-cast La0.75Mg0.25Ni3.5Co0.2 alloy was annealed at 1123, 1223, and 1323 K for 10 h in 0.3 MPa argon. The microstructure and electrochemical performance of di...To improve the cyclic stability of La-Mg-Ni system alloy, as-cast La0.75Mg0.25Ni3.5Co0.2 alloy was annealed at 1123, 1223, and 1323 K for 10 h in 0.3 MPa argon. The microstructure and electrochemical performance of different annealed alloys were investigated systematically by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-Ray Photoelectron Spectroscopy (XPS), and electrochemical experiments. The results obtained by XRD and SEM showed that the as-cast and annealed (1123 K) alloys had multiphase structure containing LaNis, (La, Mg)2(Ni, Co)7 and few LaNi2 phases. When annealing temperatures approached 1223 and 1323 K, LaNi2 phase disappeared. The annealed alloys at 1223 and 1323 K were composed of LaNi5, (La, Mg)2(Ni, Co)7 and (La, Mg)(Ni, Co)3 phases. With increasing annealing temperature, the maximum discharge capacity of the alloy decreased monotonously, but the cyclic stability was improved owing to structure homogeneity and grain growth after annealing, as well as the enhancement of anti-oxidation/corrosion ability and the suppression of pulverization during cycling in KOH electrolyte.展开更多
The La-Mg-Ni-based A2B7-type Lao.8_xNdx Mgo.2Ni3.35Alo.lSio.o5 (x = 0, 0.1, 0.2, 0.3, and 0.4) electrode alloys were prepared by casting and annealing. The influence of the partial substitution of Nd for La on the s...The La-Mg-Ni-based A2B7-type Lao.8_xNdx Mgo.2Ni3.35Alo.lSio.o5 (x = 0, 0.1, 0.2, 0.3, and 0.4) electrode alloys were prepared by casting and annealing. The influence of the partial substitution of Nd for La on the structure and electrochemical performances of the alloys was investigated. The structural analysis of X-ray diffraction and scanning electron microscopy reveals that the experimental alloys consist of two major phases: (La,Mg)2Ni7 with the hexagonal Ce2Ni7-type structure and LaNi5 with the hexagonal CaCus-type structure as well as some residual phases of LaNi3 and NdNis. The electrochemical measurements indicate that an evident change of the electrochemical performance of the alloys is associated with the substitution of Nd for La. The discharge capacity of the alloy first increases then decreases with the growing Nd content, whereas their cycle stability clearly grows all the time. Furthermore, the measurements of the high rate discharge ability, the limiting current density, and hydrogen diffusion coefficient all demonstrate that the electrochemical kinetic properties of the alloy electrodes first augment then decline with the rising amount of Nd substitution.展开更多
The La-Mg-Ni-based A2B7-type La0.5Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The influences of the additional silicon and the annealing treatment on the structure and elect...The La-Mg-Ni-based A2B7-type La0.5Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The influences of the additional silicon and the annealing treatment on the structure and electrochemical performances of the alloys were investigated systemically. Both of the analyses of XRD and SEM reveal that the as-cast and annealed alloys are of a multiphase structure, involving two main phases (La, Mg)2Ni7 and LaNi5 as well as one minor phase LaNi3. The addition of Si and annealing treatment bring on an evident change in the phase abundances and cell parameters of (La, Mg)2Ni7 and LaNi5 phase for the alloy without altering its phase structure. The phase abundances decrease from 74.3% (x=0) to 57.8% (x=0.2) for the (La, Mg)2Ni7 phase, and those of LaNi5 phase increase from 20.2% (x^0) to 37.3% (x=0.2). As for the electrochemical measurements, adding Si and performing annealing treatment have engendered obvious impacts. The cycle stability of the alloys is improved dramatically, being enhanced from 80.3% to 93.7% for the as-annealed (950 ℃) alloys with Si content increasing from 0 to 0.2. However, the discharge capacity is reduced by adding Si, from 399.4 to 345.3 mA.h/g as the Si content increases from 0 to 0.2. Furthermore, such addition makes the electrochemical kinetic properties of the alloy electrodes first increase and then decrease. Also, it is found that the overall electrochemical properties of the alloys first augment and then fall with the annealing temperature rising.展开更多
The effects of different proportions of La and Y elements in the A-side on the structure and properties of A_(2)B_(7)-type La-Y-Ni hydrogen storage alloys were investigated.The(La,Y)_(2)Ni_(7)hydrogen storage alloys w...The effects of different proportions of La and Y elements in the A-side on the structure and properties of A_(2)B_(7)-type La-Y-Ni hydrogen storage alloys were investigated.The(La,Y)_(2)Ni_(7)hydrogen storage alloys with different La/Y ratios were prepared by sintering the Y_(2)Ni_(4)precursor and different AB_(5)-type precursors at 1298 K for 5 h and subsequently annealed for 20 h at 1248 K.All the alloys only contain Ce_(2)Ni_(7)(2H-type)and Gd_(2)Co_(7)(3R-type)phases with different mass ratios.As the La/Y ratio decreases,the cell volume of the two phases declines and the corresponding plateau pressure gradually increases.As the proportion of Y in the alloy increases,the hydrogen storage capacity increases gradually from 1.309 wt%(La/Y=1/1)to 1.713 wt%(La/Y=1/5)and the high-rate discharge(HRD1500)ability of the alloy electrodes increases gradually from 62.7%(La/Y=1/1)to 88.6%(La/Y=1/5).The hydrogen diffusion rate in the bulk of the alloy is the controlling step of hydriding/dehydriding kinetics.The Y ele ment can effectively inhibit the hydrogen-induced amorphous(HIA)of La-Y-Ni alloys,but the poor stability of the Y element in alkaline KOH aqueous solution leads to a decrease in the electrochemical cyclic stability with increasing Y content.展开更多
The La-Mg-Ni-based A2B7-type La0.8-xNdxMg0.2Ni3.15Co0.2Al0.15 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were prepared by casting and annealing. The influences of partial substitution of Nd for La on the structure a...The La-Mg-Ni-based A2B7-type La0.8-xNdxMg0.2Ni3.15Co0.2Al0.15 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were prepared by casting and annealing. The influences of partial substitution of Nd for La on the structure and electrochemical performance of the as-cast and annealed alloys were investigated. It was found that the experimental alloys consist of two major phases, (La, Mg)2Ni7 phase with the hexagonal Ce2Ni7-type structure and LaNi5 phase with the hexagonal CaCu5-type structure, as well as some residual phase LaNi3 and NdNi5. The discharge capacity and high rate discharge ability (HRD) of the as-cast and annealed alloys first increase and then decrease with Nd content growing. The as-cast and annealed alloys (x=0.3) yield the largest discharge capacities of 380.3 and 384.3 mA·h/g, respectively. The electrochemical cycle stability of the as-cast and annealed alloys markedly grows with Nd content rising. As the Nd content increase from 0 to 0.4. The capacity retaining rate (S100) at the 100th charging and discharging cycle increases from 64.98% to 85.17% for the as-cast alloy, and from 76.60% to 96.84% for the as-annealed alloy.展开更多
In order to improve the electrochemical cycle stability of the RE–Mg–Ni-based A2B7-type electrode alloys, a small amount of Si has been added into the alloys.The casting and annealing technologies were adopted to fa...In order to improve the electrochemical cycle stability of the RE–Mg–Ni-based A2B7-type electrode alloys, a small amount of Si has been added into the alloys.The casting and annealing technologies were adopted to fabricate the La0.8Mg0.2Ni3.3Co0.2Six(x = 0–0.2) electrode alloys. The impacts of the addition of Si and annealing treatment on the structures and electrochemical performances of the alloys were investigated systematically. The results obtained by XRD and SEM show that all the as-cast and annealed alloys are of a multiphase structure, involving two main phases(La, Mg)2Ni7and La Ni5 as well as a residual phase La Ni3. Both adding Si and the annealing treatment lead to an evident change in the phase abundance and cell parameters of(La, Mg)2Ni7and La Ni5 major phases of the alloy without altering its main phase component. Moreover, the annealing treatment has the composition of the alloy distributed more homogeneously overall and simultaneously causes the grain of the alloy to be coarsened obviously. The electrochemical measurements indicate that adding Si and the annealing treatment give a significant rise to the influence on the electrochemical performances of the alloys. In brief, the cycle stability of the as-cast and annealed alloys evidently increases with the rising of Si content, while their discharge capacities obviously decrease under the same circumstances. Furthermore, the electrochemical kineticproperties of the electrode alloys, including the high rate discharge ability, the limiting current density(IL), hydrogen diffusion coefficient(D), and the charge-transfer resistance, first augment and then decline with the rising of Si content. Similarly, it is found that the above-mentioned electrochemical properties first mount up and then go down with the rising annealing temperature.展开更多
For the purpose of improving the electrochemical cycle stability of the La-Mg-Ni based A2BT-type electrode alloys, both reducing Mg content and substituting La with Pr were adopted. The Lao.8-xPrxMg0.2Ni3.15Co0.2A10.1...For the purpose of improving the electrochemical cycle stability of the La-Mg-Ni based A2BT-type electrode alloys, both reducing Mg content and substituting La with Pr were adopted. The Lao.8-xPrxMg0.2Ni3.15Co0.2A10.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were fabricated by casting and annealing. The investigation on the structures and electrochemical performances of the alloys was performed. The obtained results reveal that the as-cast and annealed alloys comprise two major phases, (La, Mg)2Ni7 phase with the hexagonal Ce2NiT-type structure and LaNi5 phase with the hexagonal CaCus-type structure, as well as a little residual LaNi3 phase. It is also found that the addition of Pr element observably affects the electrochemical hydrogen storage characteristics of the alloys, just as the discharge capacity and high rate discharge ability (HRD) first rise then fall with the growing of Pr content, and among all the alloys, the as-cast and annealed (x=0.3) alloys generate the largest discharge capacities of 360.8 and 386.5 mA.h/g, respectively. Additionally, the electrochemical cycle stability of all the alloys markedly grows with the increase of Pr content. The capacity retaining rate (S100) at the 100th charging and discharging cycle is enhanced from 64.98% to 77.55% for the as-cast alloy, and from 76.60% to 95.72% for the as-annealed alloy by rising Pr content from 0 to 0.4. Furthermore, the substitution of Pr for La results in first increase and then decrease in the hydrogen diffusion coefficient (D), the limiting current density (IL) as well as the electrochemical impedance.展开更多
In order to ameliorate the electrochemical cycle stability of the RE-Mg-Ni based A2B7-type electrode alloys, the Mg content in the alloy was reduced and La in the alloy was partially substituted by Sm. The La0.8-xSmxM...In order to ameliorate the electrochemical cycle stability of the RE-Mg-Ni based A2B7-type electrode alloys, the Mg content in the alloy was reduced and La in the alloy was partially substituted by Sm. The La0.8-xSmxMg0.2Ni3.15Co0.2Al0.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4) elec-trode alloys were fabricated by casting and annealing. The microstructures of the as-cast and annealed alloys were characterized by XRD and SEM. The electrochemical hydrogen storage characteristics of the as-cast and annealed alloys were measured. The results revealed that all of the experimental alloys mainly consisted of two phases: (La,Mg)2Ni7 phase with the hexagonal Ce2Ni7-type structure and LaNi5 phase with the hexagonal CaCu5-type structure. As Sm content grew from 0 to 0.4, the discharge capacity and the high rate discharge ability (HRD) first in-creased and then decreased for the as-cast and annealed alloys, whereas the capacity retaining rate (S100) after 100 cycles increased continuously.展开更多
Hydrogen storage alloys(LaGdMg)Ni3.35-xCoxAl0.15(x=0,0.1,0.3,0.5,1.0,1.5,2.0) were prepared by induction melting followed by annealing treatment in argon atmosphere.The effects of partly replacing Ni by Co element in(...Hydrogen storage alloys(LaGdMg)Ni3.35-xCoxAl0.15(x=0,0.1,0.3,0.5,1.0,1.5,2.0) were prepared by induction melting followed by annealing treatment in argon atmosphere.The effects of partly replacing Ni by Co element in(LaGdMg)Ni3.35Al0.15 on the phase structure and electrochemical properties of(LaGdMg)Ni3.35-xCoxAl0.15 alloys were investigated.Structure analysis showed that the alloys consisted of Ce2Ni7-type(Gd2Co7-type),CaCu5-type,Pr5Co19-type,PuNi3-type phase structure.The addition of Co element obviously reduced the contents of CaCu5-type phase and increased the contents of Ce2Ni7-type phase.However,Pr5Co19-type and CaCu5-type phase obviously increased with the high content of Co.Rietveld analysis showed that the c-axis lattice parameters and cell volumes of the component phases increased with increasing Co content.The electrochemical measurements showed that as the Co content increased,the maximum discharge capacity and the cyclic stability of the annealed alloys both first increased then decreased.The(LaGdMg)Ni3.05Co0.3Al0.15 alloy electrode exhibited the maximum discharge capacity(392.92 mAh/g),and the(LaGdMg)Ni1.85Co1.0Al0.15 alloy electrode showed the best cyclic stability(S100=96.1%).展开更多
基金Projects(50961009,51161015)supported by the National Natural Science Foundation of ChinaProject(2011AA03A408)supported by the High-tech Research and Development Program of ChinaProjects(2011ZD10,2010ZD05)supported by the Natural Science Foundation of Inner Mongolia,China
文摘In order to ameliorate the electrochemical hydrogen storage performance of La-Mg-Ni system A2B7-type electrode alloys, a small amount of Si was added. The La0.8Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The effects of adding Si on the structure and electrochemical hydrogen storage characteristics of the alloys were investigated systematically. The results indicate that the as-cast and annealed alloys hold multiple structures, involving two major phases of (La, Mg)2Ni7 with a Ce2Ni7-type hexagonal structure and LaNi5 with a CaCu5-type hexagonal structure as well as one residual phase LaNi3. The addition of Si results in a decrease in (La, Mg)2Ni7 phase and an increase in LaNi5 phase without changing the phase structure of the alloys. What is more, it brings on an obvious effect on electrochemical hydrogen storage characteristics of the alloys. The discharge capacities of the as-cast and annealed alloys decline with the increase of Si content, but their cycle stabilities clearly grow under the same condition. Furthermore, the measurements of the high rate discharge ability, the limiting current density, hydrogen diffusion coefficient as well as electrochemical impedance spectra all indicate that the electrochemical kinetic properties of the electrode alloys first increase and then decrease with the rising of Si content.
基金Funded by National Natural Science Foundations of China(Nos.51161015 and 51371094)National 863 Plans Projects of China(No.2011AA03A408)
文摘The casting and annealing technologies were applied to fabricate the La0.8Mg0.2Ni3.3Co0.2Six (x = 0-0.2) electrode alloys. The effects of Si content and annealing temperature on the structure and electrochemical performances of the alloys were investigated systematically. The analyses of XRD and SEM show that all the alloys possess a multiphase structure, involving two main phases (La, Mg)2Ni7 and LaNi5 as well as a residual phase LaNi3. The addition of Si brings on an evident increase in the LaNi5 phase and a decrease in the (La, Mg)2Ni7 phase, without altering the main phase component of the alloy, which also makes the lattice constants and cell volumes of the alloy enlarged. Likewise, the annealing treatment engenders the same action on the lattice constants and cell volumes as adding Si. Simultaneously, it gives rise to the variation of the phase abundance and the coarsening of the alloy grains. The electrochemical measurements indicate that the addition of Si ameliorates the cycle stability of the as-cast and annealed alloys significantly, but impairs their discharge capacities clearly. Similarly, the annealing treatment makes a positive contribution to the cycle stability of the alloy evidently, and the discharge capacity of the alloy shows a maximum value with annealing temperature rising. Furthermore, the high rate discharge ability (HR) first augments and then declines with the rising of Si content and annealing temperature.
文摘Investigation of alloy structure shows that La2-xMgxNi7 (x = 0.3 - 0.8) alloys are mainly com- posed of Ce/Ni7-type, Gd2Co7-type and PuNi3-type phase. The influence of Mg content in alloys on the phase structure is great, resulting in a linear decrease of the unit cell parameters of main phases and increase of hydrogen absorption/desorption plateau as Mg content increases. Electrochemical measurements show that as the Mg content increases, the discharge capacity of alloy electrodes first increases and then decreases. The cyclic stability presents a deteriorative trend. La1.4Mg0.6 Ni7 alloy electrode exhibits the maximum electrochemical discharge capacity (378 mAh·g^-1), and the La1.6Mg0.4Ni7 alloy electrode shows the best cyclic stability (S270 = 81%).
基金the National Natural Science Foundation of China (50701011)Natural Science Foundation of Inner Mongolia, China (200711020703)Science and Technology Planned Project of Inner Mongolia, China (20050205)
文摘In order to improve the cyclic stability of La-Mg-Ni system (Ce2Ni7-type) alloy electrode, small amount of Co was added in La0.75Mg0.25Ni3.5 alloy. The effect of Co on electrochemical performance and microstructure of the alloys were investigated in detail. XRD results showed that the alloys had multiphase structure composed of (La, Mg)2Ni7, LaNi5 and small amount of LaNi2 phases. The discharge capacity of the alloys first increased and then decreased with increasing Co content. At a discharge current density of 900 mA/g, the HRD of the alloy electrodes increased from 81.3% (x=0) to 89.2 % (x=0.2), and then reduced to 87.8 % (x=0.6). After 60 charge/discharge cycles, the capacity retention rate of the alloys enhanced from 52.67% to 61.32%, and the capacity decay rate of the alloys decreased from 2.60 to 2.05 mAh/g per cycle with increasing Co content. The obtained results by XPS and XRD showed that the fundamental reasons for the capacity decay of the La-Mg-Ni system (Ce2Ni7-type) alloy electrodes were corrosion and oxidation as well as passivation of Mg and Lain alkaline solution.
文摘The partial substitution of Zr for La has been performed in order to ameliorate the electrochemical hydrogen storage performances of La–Mg–Ni based A2B7-type electrode alloys. The melt spinning technology was used to prepare the La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1 (x=0, 0.05, 0.1, 0.15, 0.2) electrode alloys. The impacts of the melt spinning and the substituting La with Zr on the structures and the electrochemical hydrogen storage characteristics of the alloys were systemically investigated. The analysis of XRD and TEM reveals that the as-cast and spun alloys have a multiphase structure, composing of two main phases (La, Mg)2Ni7 and LaNi5 as well as a residual phase LaNi2. The electrochemical measurement indicates that both the substitution of Zr for La and the melt spinning ameliorate the electrochemical cycle stability of the alloys dramatically. Furthermore, the high rate discharge ability (HRD) of the as-spun (10 m/s) alloys notably declines with growing the amount of Zr substitution, while it first augments and then falls for the (x=0.1) alloy with rising the spinning rate.
基金supported by the National Natural Science Foundation of China(Nos.51161015 and 50961009)the National High-Technology Research and Development Program of China(No.2011AA03A408)the Natural Science Foundation of Inner Mongolia,China(Nos.2011ZD10 and 2010ZD05)
文摘In order to ameliorate the electrochemical hydrogen storage performances of La-Mg–Ni system A_2B_7-type electrode alloys, the partial substitution of M (M = Zr, Pr) for La was performed. The melt spinning technology was used to fabricate the La_(0.75-x)M_xMg_0.25Ni_3.2Co_0.2Al_0.1 (M = Zr, Pr; x = 0, 0.1) electrode alloys. The influences of the melt spinning and substituting La with M (M = Zr, Pr) on the structures and the electrochemical hydrogen storage characteristics of the alloys were investigated. The analysis of XRD, SEM, and TEM reveals that the as-cast and spun alloys have a multiphase structure composed of two main phases (La, Mg)_2Ni_7 and LaNi_5 as well as a residual phase LaNi_2 . The as-spun (M = Pr) alloy displays an entire nanocrystalline structure, while an amorphous-like structure is detected in the as-spun (M = Zr) alloy, implying that the substitution of Zr for La facilitates the amorphous formation. The electrochemical measurements exhibit that the substitution of Pr for La clearly increases the discharge capacity of the alloys; however, the Zr substitution brings on an adverse impact. Meanwhile, the M (M = Zr, Pr) substitution significantly enhances its cycle stability. The melt spinning exerts an evident effect on the electrochemical performances of the alloys, whose discharge capacity and high rate discharge ability (HRD) first mount up and then fall with the growing spinning rate, whereas their cycle stabilities monotonously augment as the spinning rate increases.
基金Project(2007AA03Z227)supported by High-tech Research and Development Program of ChinaProjects(50871050,50701011)supported by the National Natural Science Foundation of China+1 种基金Project(200711020703)supported by the Natural Science Foundation of Inner Mongolia,ChinaProject(NJzy08071)supported by High Education Science Research Project of Inner Mongolia,China
文摘The La-Mg-Ni system A2B7-type electrode alloys with nominal composition La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1(x=0,0.05, 0.1,0.15,0.2)were prepared by casting and melt-spinning.The influences of melt spinning on the electrochemical performances as well as the structures of the alloys were investigated.The results obtained by XRD,SEM and TEM show that the as-cast and spun alloys have a multiphase structure,consisting of two main phases(La,Mg)Ni3 and LaNi5 as well as a residual phase LaNi2.The melt spinning leads to an obvious increase of the LaNi5 phase and a decrease of the(La,Mg)Ni3 phase in the alloys.The results of the electrochemical measurement indicate that the discharge capacity of the alloys(x≤0.1)first increases and then decreases with the increase of spinning rate,whereas for x>0.1,the discharge capacity of the alloys monotonously falls.The melt spinning slightly impairs the activation capability of the alloys,but it significantly enhances the cycle stability of the alloys.
基金financially supported by the National Key Research and Development Program of China(2022YFB3803804)the National Natural Science Foundation of China(Nos.51971197,52071281 and 52201282)+3 种基金Basic Innovation Research Project in Yanshan University(No.2022LGZD004)China Postdoctoral Science Foundation(2023M742945)Postdoctoral research project of Hebei Province(B2023003023)Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance(No.22567616H)。
文摘A novel approach based on thermal diffusion was used to achieve controllable Mg content in A_(2)B_(7)-type La-Mg-Ni-based alloys.The formation mechanism of the A_(2)B_(7)-type phase as a result of the thermal diffusion process and the effect of Mg content on hydrogen storage performance were investigated.X-ray diffraction(XRD)patterns and Rietveld refinement results showed that increased Mg transformed the LaNi_(5)phase in the La_(0.74)Sm_(0.03)Y_(0.23)Ni_(4.32)Al_(0.04)precursor alloy into a superlattice structure.Scanning electron microscopy(SEM)images showed that Mg was evenly distributed in the alloy bulk.Mg in the superlattice significantly inhibited the phase decomposition of the superlattice structure during the hydrogen absorption/desorption cycles.An A_(2)B_(7)-type La_(0.57)Sm_(0.02)Y_(0.18)Mg_(0.23)Ni_(3.38)Al_(0.03)alloy composed of Gd_(2)Co_(7)and Ce_(2)Ni_(7)phases was successfully synthesized.The pressure-composition isotherm profiles showed that the alloy had a hydrogen storage capacity as high as 1.73 wt%,with good cycling stability.After 50 cycles of hydrogen absorption/desorption,the alloy retained a hydrogen storage capacity of 1.45 wt%,with a capacity retention rate of up to 84.28%.The Mg thermal diffusion process thus provides a new approach for the controlled preparation of La-Mg-Ni-based alloys.
基金Project supported by the National Natural Science Foundation of China(52271214,51831009)。
文摘Rare earth-based superlattice alloys have great potential for gaseous hydrogen storage,as well as successful application as nickel-metal hydride batteries anodes.In this work,Y substitution was carried out to adjust the gaseous hydrogen storage properties of A_(2)B_(7)-type La_(0.7)Mg_(0.3)Ni_(3.5)alloys.The results indicate a multiphase structure in the alloys comprised of the main rhombohedral Gd_(2)Co_(7)and PuNi_(3)phases,with a small amount of CaCu_(5)phase.Moreover,the Y substitution results in higher abundance of the Gd_(2)Co_(7)phase.The alloy La_(0.42)Y_(0.28)Mg_(0.3)Ni_(3.5)exhibits a hydrogen storage cap acity of 1.55 wt%at 298 K and a desorption plateau pressure of 0.244 MPa.In addition,this alloy demonstrates a stable cycle life by a capacity retention of 94.2%after 50 cycles,with the main capacity degradation occurring during the initial 20 cycles.This work accentuates the potential of the La-Y-Mg-Ni-based superlattice alloys for applications in solid-state hydrogen storage.
基金Project supported by the National Natural Science Foundation of China(50642033 50701011)+1 种基金Key Technologies R&D Program of Inner Mongolia, China (20050205)Natural Science Foundation of Inner Mongolia, China (200711020703)
文摘To improve the cyclic stability of La-Mg-Ni system alloy, as-cast La0.75Mg0.25Ni3.5Co0.2 alloy was annealed at 1123, 1223, and 1323 K for 10 h in 0.3 MPa argon. The microstructure and electrochemical performance of different annealed alloys were investigated systematically by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-Ray Photoelectron Spectroscopy (XPS), and electrochemical experiments. The results obtained by XRD and SEM showed that the as-cast and annealed (1123 K) alloys had multiphase structure containing LaNis, (La, Mg)2(Ni, Co)7 and few LaNi2 phases. When annealing temperatures approached 1223 and 1323 K, LaNi2 phase disappeared. The annealed alloys at 1223 and 1323 K were composed of LaNi5, (La, Mg)2(Ni, Co)7 and (La, Mg)(Ni, Co)3 phases. With increasing annealing temperature, the maximum discharge capacity of the alloy decreased monotonously, but the cyclic stability was improved owing to structure homogeneity and grain growth after annealing, as well as the enhancement of anti-oxidation/corrosion ability and the suppression of pulverization during cycling in KOH electrolyte.
基金supported by the National Natural Science Foundation of China(Nos.51161015 and 50961009)the National High Technology Research and Development Program of China(No.2011AA03A408)the Natural Science Foundation of Inner Mongolia(Nos.2011ZD10 and 2010ZD05)
文摘The La-Mg-Ni-based A2B7-type Lao.8_xNdx Mgo.2Ni3.35Alo.lSio.o5 (x = 0, 0.1, 0.2, 0.3, and 0.4) electrode alloys were prepared by casting and annealing. The influence of the partial substitution of Nd for La on the structure and electrochemical performances of the alloys was investigated. The structural analysis of X-ray diffraction and scanning electron microscopy reveals that the experimental alloys consist of two major phases: (La,Mg)2Ni7 with the hexagonal Ce2Ni7-type structure and LaNi5 with the hexagonal CaCus-type structure as well as some residual phases of LaNi3 and NdNis. The electrochemical measurements indicate that an evident change of the electrochemical performance of the alloys is associated with the substitution of Nd for La. The discharge capacity of the alloy first increases then decreases with the growing Nd content, whereas their cycle stability clearly grows all the time. Furthermore, the measurements of the high rate discharge ability, the limiting current density, and hydrogen diffusion coefficient all demonstrate that the electrochemical kinetic properties of the alloy electrodes first augment then decline with the rising amount of Nd substitution.
基金Projects(51371094,51161015)supported by the National Natural Science Foundations of ChinaProject(2011ZD10)supported by Natural Science Foundation of Inner Mongolia,China
文摘The La-Mg-Ni-based A2B7-type La0.5Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The influences of the additional silicon and the annealing treatment on the structure and electrochemical performances of the alloys were investigated systemically. Both of the analyses of XRD and SEM reveal that the as-cast and annealed alloys are of a multiphase structure, involving two main phases (La, Mg)2Ni7 and LaNi5 as well as one minor phase LaNi3. The addition of Si and annealing treatment bring on an evident change in the phase abundances and cell parameters of (La, Mg)2Ni7 and LaNi5 phase for the alloy without altering its phase structure. The phase abundances decrease from 74.3% (x=0) to 57.8% (x=0.2) for the (La, Mg)2Ni7 phase, and those of LaNi5 phase increase from 20.2% (x^0) to 37.3% (x=0.2). As for the electrochemical measurements, adding Si and performing annealing treatment have engendered obvious impacts. The cycle stability of the alloys is improved dramatically, being enhanced from 80.3% to 93.7% for the as-annealed (950 ℃) alloys with Si content increasing from 0 to 0.2. However, the discharge capacity is reduced by adding Si, from 399.4 to 345.3 mA.h/g as the Si content increases from 0 to 0.2. Furthermore, such addition makes the electrochemical kinetic properties of the alloy electrodes first increase and then decrease. Also, it is found that the overall electrochemical properties of the alloys first augment and then fall with the annealing temperature rising.
基金Project supported by the National Natural Science Foundation of China(51961002)National Key Research and Development Projects of China(2018YFE124400)+2 种基金Natural Science Foundation of Inner Mongolia(2020MS05013,2018MS05016)Science and Technology Program of Inner Mongolia(2020B2156)Special Project of Achievement Transformation in Inner Mongolia(2019CG082)。
文摘The effects of different proportions of La and Y elements in the A-side on the structure and properties of A_(2)B_(7)-type La-Y-Ni hydrogen storage alloys were investigated.The(La,Y)_(2)Ni_(7)hydrogen storage alloys with different La/Y ratios were prepared by sintering the Y_(2)Ni_(4)precursor and different AB_(5)-type precursors at 1298 K for 5 h and subsequently annealed for 20 h at 1248 K.All the alloys only contain Ce_(2)Ni_(7)(2H-type)and Gd_(2)Co_(7)(3R-type)phases with different mass ratios.As the La/Y ratio decreases,the cell volume of the two phases declines and the corresponding plateau pressure gradually increases.As the proportion of Y in the alloy increases,the hydrogen storage capacity increases gradually from 1.309 wt%(La/Y=1/1)to 1.713 wt%(La/Y=1/5)and the high-rate discharge(HRD1500)ability of the alloy electrodes increases gradually from 62.7%(La/Y=1/1)to 88.6%(La/Y=1/5).The hydrogen diffusion rate in the bulk of the alloy is the controlling step of hydriding/dehydriding kinetics.The Y ele ment can effectively inhibit the hydrogen-induced amorphous(HIA)of La-Y-Ni alloys,but the poor stability of the Y element in alkaline KOH aqueous solution leads to a decrease in the electrochemical cyclic stability with increasing Y content.
基金Projects(51161015,50961009)supported by the National Natural Science Foundations of ChinaProject(2011AA03A408)supported by the National Hi-tech Research and Development Program of ChinaProjects(2011ZD10,2010ZD05)supported by the Natural Science Foundation of Inner Mongolia,China
文摘The La-Mg-Ni-based A2B7-type La0.8-xNdxMg0.2Ni3.15Co0.2Al0.15 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were prepared by casting and annealing. The influences of partial substitution of Nd for La on the structure and electrochemical performance of the as-cast and annealed alloys were investigated. It was found that the experimental alloys consist of two major phases, (La, Mg)2Ni7 phase with the hexagonal Ce2Ni7-type structure and LaNi5 phase with the hexagonal CaCu5-type structure, as well as some residual phase LaNi3 and NdNi5. The discharge capacity and high rate discharge ability (HRD) of the as-cast and annealed alloys first increase and then decrease with Nd content growing. The as-cast and annealed alloys (x=0.3) yield the largest discharge capacities of 380.3 and 384.3 mA·h/g, respectively. The electrochemical cycle stability of the as-cast and annealed alloys markedly grows with Nd content rising. As the Nd content increase from 0 to 0.4. The capacity retaining rate (S100) at the 100th charging and discharging cycle increases from 64.98% to 85.17% for the as-cast alloy, and from 76.60% to 96.84% for the as-annealed alloy.
基金financially supported by the National Natural Science Foundation of China (Nos. 50961009 and 51161015)the National High Technology Research and Development Program of China (No. 2011AA03A408)the National High Technology Research and Development Program of China (Nos. 2011ZD10 and 2010ZD05)
文摘In order to improve the electrochemical cycle stability of the RE–Mg–Ni-based A2B7-type electrode alloys, a small amount of Si has been added into the alloys.The casting and annealing technologies were adopted to fabricate the La0.8Mg0.2Ni3.3Co0.2Six(x = 0–0.2) electrode alloys. The impacts of the addition of Si and annealing treatment on the structures and electrochemical performances of the alloys were investigated systematically. The results obtained by XRD and SEM show that all the as-cast and annealed alloys are of a multiphase structure, involving two main phases(La, Mg)2Ni7and La Ni5 as well as a residual phase La Ni3. Both adding Si and the annealing treatment lead to an evident change in the phase abundance and cell parameters of(La, Mg)2Ni7and La Ni5 major phases of the alloy without altering its main phase component. Moreover, the annealing treatment has the composition of the alloy distributed more homogeneously overall and simultaneously causes the grain of the alloy to be coarsened obviously. The electrochemical measurements indicate that adding Si and the annealing treatment give a significant rise to the influence on the electrochemical performances of the alloys. In brief, the cycle stability of the as-cast and annealed alloys evidently increases with the rising of Si content, while their discharge capacities obviously decrease under the same circumstances. Furthermore, the electrochemical kineticproperties of the electrode alloys, including the high rate discharge ability, the limiting current density(IL), hydrogen diffusion coefficient(D), and the charge-transfer resistance, first augment and then decline with the rising of Si content. Similarly, it is found that the above-mentioned electrochemical properties first mount up and then go down with the rising annealing temperature.
基金Projects(51161015,50961009) supported by the National Natural Science Foundation of ChinaProject(2011AA03A408) supported by the National High Technology Research and Development Program of ChinaProjects(2011ZD10,2010ZD05) supported by the Natural Science Foundation of Inner Mongolia,China
文摘For the purpose of improving the electrochemical cycle stability of the La-Mg-Ni based A2BT-type electrode alloys, both reducing Mg content and substituting La with Pr were adopted. The Lao.8-xPrxMg0.2Ni3.15Co0.2A10.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were fabricated by casting and annealing. The investigation on the structures and electrochemical performances of the alloys was performed. The obtained results reveal that the as-cast and annealed alloys comprise two major phases, (La, Mg)2Ni7 phase with the hexagonal Ce2NiT-type structure and LaNi5 phase with the hexagonal CaCus-type structure, as well as a little residual LaNi3 phase. It is also found that the addition of Pr element observably affects the electrochemical hydrogen storage characteristics of the alloys, just as the discharge capacity and high rate discharge ability (HRD) first rise then fall with the growing of Pr content, and among all the alloys, the as-cast and annealed (x=0.3) alloys generate the largest discharge capacities of 360.8 and 386.5 mA.h/g, respectively. Additionally, the electrochemical cycle stability of all the alloys markedly grows with the increase of Pr content. The capacity retaining rate (S100) at the 100th charging and discharging cycle is enhanced from 64.98% to 77.55% for the as-cast alloy, and from 76.60% to 95.72% for the as-annealed alloy by rising Pr content from 0 to 0.4. Furthermore, the substitution of Pr for La results in first increase and then decrease in the hydrogen diffusion coefficient (D), the limiting current density (IL) as well as the electrochemical impedance.
基金Project supported by National Natural Science Foundations of China (51161015 and 50961009)National High Technology Research and Development Program of China (2011AA03A408)Natural Science Foundations of Inner Mongolia,China (2011ZD10 and 2010ZD05)
文摘In order to ameliorate the electrochemical cycle stability of the RE-Mg-Ni based A2B7-type electrode alloys, the Mg content in the alloy was reduced and La in the alloy was partially substituted by Sm. The La0.8-xSmxMg0.2Ni3.15Co0.2Al0.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4) elec-trode alloys were fabricated by casting and annealing. The microstructures of the as-cast and annealed alloys were characterized by XRD and SEM. The electrochemical hydrogen storage characteristics of the as-cast and annealed alloys were measured. The results revealed that all of the experimental alloys mainly consisted of two phases: (La,Mg)2Ni7 phase with the hexagonal Ce2Ni7-type structure and LaNi5 phase with the hexagonal CaCu5-type structure. As Sm content grew from 0 to 0.4, the discharge capacity and the high rate discharge ability (HRD) first in-creased and then decreased for the as-cast and annealed alloys, whereas the capacity retaining rate (S100) after 100 cycles increased continuously.
基金Project supported by the National Natural Science Foundation of China (50941019)
文摘Hydrogen storage alloys(LaGdMg)Ni3.35-xCoxAl0.15(x=0,0.1,0.3,0.5,1.0,1.5,2.0) were prepared by induction melting followed by annealing treatment in argon atmosphere.The effects of partly replacing Ni by Co element in(LaGdMg)Ni3.35Al0.15 on the phase structure and electrochemical properties of(LaGdMg)Ni3.35-xCoxAl0.15 alloys were investigated.Structure analysis showed that the alloys consisted of Ce2Ni7-type(Gd2Co7-type),CaCu5-type,Pr5Co19-type,PuNi3-type phase structure.The addition of Co element obviously reduced the contents of CaCu5-type phase and increased the contents of Ce2Ni7-type phase.However,Pr5Co19-type and CaCu5-type phase obviously increased with the high content of Co.Rietveld analysis showed that the c-axis lattice parameters and cell volumes of the component phases increased with increasing Co content.The electrochemical measurements showed that as the Co content increased,the maximum discharge capacity and the cyclic stability of the annealed alloys both first increased then decreased.The(LaGdMg)Ni3.05Co0.3Al0.15 alloy electrode exhibited the maximum discharge capacity(392.92 mAh/g),and the(LaGdMg)Ni1.85Co1.0Al0.15 alloy electrode showed the best cyclic stability(S100=96.1%).