Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase a...Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase annular electromagnetic stirring(A-EMS)technique under different conditions.The effects of stirring current,pouring temperature and stirring time on microstructural evolution,mean particle size,shape factor and solid fraction were investigated.The rheocasting process was carried out by using a drop weight setup and to inject the prepared semi-solid slurry in optimal conditions into the step-die cavity.The filling behavior and mechanical properties of parts were studied.Microstructural evolution showed that the best semi-solid slurry which had fine spherical particles with the average size of~27μm and a shape factor of~0.8 was achieved at the stirring current of 70 A,melt pouring temperature of 670℃,and stirring time of 30 s.Under these conditions,the step-die cavity was completely filled at die preheating temperature of 470℃.The hardness increases by decreasing step thickness as well as die preheating temperature.Moreover,the tensile properties are improved at lower die preheating temperatures.The fracture surface,which consists of a complex topography,indicates a typical ductile fracture.展开更多
The effect of cooling rate of the solidification process on the following solution heat treatment of A356 alloy was investigated,where the cooling rates of 96 K/s and 3 K/s were obtained by the step-like metal mold.Th...The effect of cooling rate of the solidification process on the following solution heat treatment of A356 alloy was investigated,where the cooling rates of 96 K/s and 3 K/s were obtained by the step-like metal mold.Then the eutectic silicon morphology evolution and tensile properties of the alloy samples were observed and analyzed after solution heat treatment at 540 °C for different time.The results show that the high cooling rate of the solidification process can not only reduce the solid solution heat treatment time to rapidly modify the eutectic silicon morphology,but also improve the alloy tensile properties.Specially,it is found that the disintegration,the spheroidization and coarsening of eutectic silicon of A356 alloy are completed during solution heat treatment through two stages,i.e.,at first,the disintegration and spheroidization of the eutectic silicon mainly takes place,then the eutectic silicon will coarsen.展开更多
The effect of grain refiner, Mn and Sn additions on the sliding wear behavior of A356 aluminum alloys was investigated. The microstructure and worn surfaces of the studied alloys were characterized by optical microsc...The effect of grain refiner, Mn and Sn additions on the sliding wear behavior of A356 aluminum alloys was investigated. The microstructure and worn surfaces of the studied alloys were characterized by optical microscopy(OM), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). The experimental results indicate that the alloy refined by Al-5Ti-B alloy exhibits equiaxed α(Al) dendrites and performs better wear resistance compared with the alloy without the grain refiner. Moreover, the addition of Mn can change the β-Al5 Fe Si phase to α-Al(Mn,Fe)Si phase and reduce the possibility of crack formation, thus improving the wear resistance. Sn added to A356 aluminum alloy forms Mg2 Sn precipitates after heat treatment. Therefore, the unrealizable precipitation hardening Mg2 Si phase and the softening β-Sn phase can reduce the hardness of the alloy, and finally reduce the wear resistance.展开更多
For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different ...For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different as-cast microstructures on the subsequent solution-treatment process. The experimental results show that the secondary dendrite arm spacing (SDAS) of primaryα(Al), the size of eutectic Si and the volume fraction of Al?Si eutectic are reduced with increasing the cooling rate. Eutectic Si, subjected to solution treatment at 540 °C for 1 h followed by water quenching to room temperature, is completely spheroidized at cooling rate of 2.6 K/s; is partially spheroidized atcooling rate of 0.6 K/s; and is only edge-rounded at cooling rates of 0.22 and 0.12 K /s. Whilst the microhardness is also the maximum at cooling rate of 2.6 K/s. It consequently suggests that subjected to modification by high cooling rate, the eutectic Si is more readily modified, thus shortening the necessary solution time at given solution temperature, i.e., reducing the product cost.展开更多
The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands inc...The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands including quartz, alumina and chromite into multi-step blocks. The results show that the mechanical properties and microstructures using chromite sand are the best. As the cooling speed increases, the dendrite arm spacing (DAS) decreases significantly and the mechanical properties are improved, and the elongation is more sensitive to the cooling speed as compared with the tensile strength. The increase of the properties is primarily attributed to the decrease of the DAS and the increase of the free strontium atoms in the matrix. In particular, the regression models for predicting both the tensile strength and the elongation for Sr-modified A356 aluminum casting alloy were established based on the experimental data.展开更多
An innovative one-step semi-solid processing technique of A356 Al alloy,the serpentine channel pouring rheo-diecasting process (SCRC),was explored.The mechanical properties and microstructures of the tensile samples...An innovative one-step semi-solid processing technique of A356 Al alloy,the serpentine channel pouring rheo-diecasting process (SCRC),was explored.The mechanical properties and microstructures of the tensile samples made by the SCRC technique were tested in the as-cast and T6 heat treatment conditions.The experimental results show that the as-cast ultimate tensile strength can reach about 250MPa and the elongation is 8.6%?13.2%.The ultimate tensile strength can increase approximately 30% higher than that of the as-cast one but there is some slight sacrifice of the plasticity after T6 heat treatment.Under these experimental conditions,the semi-solid A356 Al alloy slurry with primary α1(Al) grains,which have the shape factor of 0.78?0.89 and the grain diameter of 35?45μm,can be prepared by the serpentine channel pouring process.The primary α2(Al) grains are very fine during the secondary solidification stage.Compared with the conventional HPDC process,the SCRC process can improve the microstructures and mechanical properties of the tensile test samples.The advantages of the SCRC process include easily incorporating with an existing HPDC machine,cancelling the preservation and transportation process of the semi-solid alloy slurry,and a higher cost performance.展开更多
The integral microstructure of semisolid A356 alloy slurry with larger capacity cast by serpentine channel was studied and the influence of cooling ability of serpentine channel on the microstructure was investigated....The integral microstructure of semisolid A356 alloy slurry with larger capacity cast by serpentine channel was studied and the influence of cooling ability of serpentine channel on the microstructure was investigated. The results indicate that ideal slurry with larger capacity can be prepared through serpentine channel with good cooling ability. When the serpentine channel was continuously cooled, both the longitudinal and the radial microstructure of the slurry was composed of granular primary phase and the integral microstructure uniformity of the slurry was good. However, uncooled serpentine channel can only produce larger slurry with fine grains in positions adjacent to its centre and with a large number of dendrites in positions close to its edge, thus, the radial microstructure of larger slurry is nonuniform. The pouring temperature is set up to 680 °C and the solid shell inside the channel can be avoided at this pouring temperature.展开更多
Semi-solid A356 aluminum alloy slurry was prepared by using serpentine channel pouring process, and the influences of the channel diameters and pouring temperatures on the semi-solid A356 aluminum alloy slurry were in...Semi-solid A356 aluminum alloy slurry was prepared by using serpentine channel pouring process, and the influences of the channel diameters and pouring temperatures on the semi-solid A356 aluminum alloy slurry were investigated. The experimental results show that when the channel diameter is 20 and 25 mm, respectively, and the pouring temperature is 640-680 ℃, the average diameter of primary α(Al) grains in the prepared A356 aluminum alloy slurry is 50-75 and 55-78 μm, respectively, and the average shape factor of primary α(Al) grains is 0.89-0.76 and 0.86-0.72, respectively. With the decline in the pouring temperature, the microstructure of semi-solid A356 aluminum alloy slurry is more desirable and a serpentine channel with smaller diameter is also advantageous to the microstructure imProvement. During the preparation of semi-solid A356 aluminum alloy slurry, a large number of nuclei can be produced by the chilling effect of the serpentine channel, and owing to the combined effect of the chilled nuclei separation and melt self-stirring, primary α(Al) nuclei can be multiplied and spheroidized finally.展开更多
The instrumented applied rod casting apparatus (ARCA) was developed to investigate the effects of tensile forces in the hot tearing formation of cast AI-Si alloys. The obtained data of tensile forces/temperature was...The instrumented applied rod casting apparatus (ARCA) was developed to investigate the effects of tensile forces in the hot tearing formation of cast AI-Si alloys. The obtained data of tensile forces/temperature was used to identify hot tearing initiation and propagation and the fracture surface of samples was also investigated. The result shows that the applied tensile forces have a complex effect on load onset for the hot tearing initiation and propagation. During the casting solidification, the tensile forces are gradually increased with the increase of solid fraction. Under the action of tensile forces, there will appear hot tearing and crack propagation on the surface of the sample. When the tensile forces exceed the inherent strength of alloys, there will be fractures on the sample. As for the A356 alloy, the critical fracture stress is about 0.1 MPa. The hot tearing surface morphology shows that the remaining intergranular bridge and liquid films are thick enough to allow the formation of dendrite-tip bumps on the fracture surface.展开更多
Experimental study of the effect of wear parameters on the wear behaviour of A356 alloy reinforced with cow horn particles(CHp) produced by spark plasma sintering was investigated. Experiments were conducted based on ...Experimental study of the effect of wear parameters on the wear behaviour of A356 alloy reinforced with cow horn particles(CHp) produced by spark plasma sintering was investigated. Experiments were conducted based on the plan of experiments generated through Taguchi's(L9) technique. Tribometer was used for the wear test and Scanning electron microscope was used to analyse the worn scar of the samples. The results shows that, A356 alloy reinforced with CHp exhibited better dry sliding wear resistance than the unreinforced alloy. Wear rate decreased as the amount of CHp reinforcement increased in the matrix. It was found that, the optimum level of the factors with minimized the wear loss were obtained at: wt%CHp(20%), applied load(10 N), sliding velocity(3 m/s) and sliding distance(2000 m). It can be seen that the wear track of the sample are(D ? 0.81 and L = 42.85 mm) and(D ? 0.54 and L= 27.03 mm) for A356 alloy and composites at optimum condition respectively. The results showed that the addition of cow horn particles as reinforcing materials in A356 alloy composites increased the wear resistance of the composites greatly.展开更多
Plasma electrolytic oxidation of a cast A356 aluminum alloy was carried out in aluminate electrolytes to develop wear and corrosion resistant coatings. Different concentrations of 2, 16 and 24 g/L NaAlO2 solutions and...Plasma electrolytic oxidation of a cast A356 aluminum alloy was carried out in aluminate electrolytes to develop wear and corrosion resistant coatings. Different concentrations of 2, 16 and 24 g/L NaAlO2 solutions and a silicate electrolyte (for comparison) were employed for the investigation. Wear performance and corrosion resistance of the coatings were evaluated by WC (tungsten carbide) ball-on-flat dry sliding tests and electrochemical methods, respectively. The results show that the coating formed for a short duration of 480 s in 24 g/L NaAlO2 solution generated the best protection. The coating sustained 30 N load for sliding time of 1800 s, showing very low wear rate of -4.5×10^-7 mm3/(N· m). A low corrosion current density of -8.81×10^-9 A/cm2 was also recorded. Despite low α-Al2O3 content of the coating, the compact and nearly single layer nature of the coating guaranteed the excellent performances.展开更多
In order to decrease the metallurgical porosity and keyhole-induced porosity during deep penetration laser welding of Al and its alloys, and increase the mechanical properties of work-piece, the effects of welding par...In order to decrease the metallurgical porosity and keyhole-induced porosity during deep penetration laser welding of Al and its alloys, and increase the mechanical properties of work-piece, the effects of welding parameters such as laser power, welding speed and defocusing value on both kinds of porosities were systemically analyzed respectively, and the shape and fluctuation of plume of the keyhole were observed to reflect the stability of the keyhole. The results show that increasing laser power or decreasing laser spot size can lead to the rising of both number and occupied area of pores in the weld; meanwhile, the plume fluctuates violently over the keyhole, which is always companied with the intense metallic vapor, liquid metal spatter and collapsing in the keyhole, thus more pores are generated in the weld. The porosity in the weld reaches the minimum at welding velocity of 2.0 m/min when laser power is 5 kW and defocusing value is 0.展开更多
The semi-solid slurry of an A356 Al alloy, which was grain-fined by yttrium, was manufactured by low temperature pouring, The effects of grain-refining on the morphology and the grain size of the primary α phase in t...The semi-solid slurry of an A356 Al alloy, which was grain-fined by yttrium, was manufactured by low temperature pouring, The effects of grain-refining on the morphology and the grain size of the primary α phase in the semi-solid A356 Al alloy were researched. The results indicate that the semi-solid A356 AI alloy with particle-like and rosette-like primary α-Al can be prepared by low temperature pouring from a liquid grain-refined A356 alloy. The grain size and particle morphology of primary α-Al in the A356 Al alloy are markedly improved by the addition of 0.5 wt,% Y. The fining mechanism of Y on the morphology and grain size of the primary α-Al in the semi-solid A356 Al alloy was delved.展开更多
The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were inve...The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were investigated. The results indicated that the semi-solid slurry to satisfy rheocasting can be manufactured by low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power remarkably affected the morphology of primary α-Al and the size of primary α-Al, and there is no obvious effect of stirring time on primary α-Al. Compared with the samples made by low superheat pouring with no stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 were markedly improved by low superheat pouring and weak electromagnetic stirring. On the condition of weak electromagnetic stirring, the pouring temperature with low superheat can be suitably raised to reach the effectiveness obtained from the lower pouring temperature without stirring.展开更多
The semi-solid slurry of A356 alloy, which is grain-refined by Al-Ti-B master alloy, is prepared by low superheat pouring and slight electromagnetic stirring. The effects of grain refining on the morphology and the gr...The semi-solid slurry of A356 alloy, which is grain-refined by Al-Ti-B master alloy, is prepared by low superheat pouring and slight electromagnetic stirring. The effects of grain refining on the morphology and the grain size of the primary α phase in the slurry manufactured are researched. The results indicate that the slurry with particle-like and rosette-like primary α phases can be prepared by low superheat pouring and slight electromagnetic stirring from liquid A356 alloy grain-refined, in which the pouring temperature can be suitably raised. Compared with the A356 samples without grain refining, the grain size and particle morphology of primary α phase as well as the distribution of the grain with particle-like or rosette-like along radial in the ingot in A356 are markedly improved by grain refining.展开更多
A new technique for preparing semisolid slurry,namely,distributary-confluence runner(DCR),was combined with die-casting(DC)to conduct rheological die-casting(R-DC)of A356 alloy.The mechanism of DCR for semisolid slurr...A new technique for preparing semisolid slurry,namely,distributary-confluence runner(DCR),was combined with die-casting(DC)to conduct rheological die-casting(R-DC)of A356 alloy.The mechanism of DCR for semisolid slurry preparation was determined via numerical simulations and experiments.The microstructure and mechanical properties of A356 alloys prepared via DC and R-DC were studied.High-quality slurry containing numerous primary α-Al(α1-Al)with an average size of 49μm and a shape factor of 0.81 could be prepared via DCR.Simulation results indicated that the unique flow state and physical field changes during slurry preparation were conducive to accelerating the uniformity of melt temperature and composition fields,nucleation exfoliation,and spherical growth.Compared with the alloy prepared via DC,the tensile strength,yield strength,and elongation of A356 alloy prepared via R-DC increased by 19%,15%,and 107%,respectively.展开更多
To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the Pr...To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the fi lling of the molten metal is not stable; and the casting does not follow the sequence solidifi cation, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the fi lling time is prolonged from 4.0 s to 4.5 s, the fi lling of molten metal becomes stable, but this casting does not follow the sequence solidifi cation either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced.展开更多
The effects of Mg and semi solid processing on the creep properties ofA356 A1 alloy were investigated. The results show that the dislocation climb controlled creep is the dominant creep mechanism and it is not affecte...The effects of Mg and semi solid processing on the creep properties ofA356 A1 alloy were investigated. The results show that the dislocation climb controlled creep is the dominant creep mechanism and it is not affected by the semi solid processing and further addition of Mg. Mg improves the alloy creep properties probably by forming large Chinese script Mg2Si compounds at the interdendritic regions. The semi solid processed specimens exhibit better creep properties in comparison with the as cast ones. It is attributed to the reduction in the stacking fault energy resulting from the significant dissolution of Mg in the a(A1) phase.展开更多
Thermal analysis technique has been used for a long time,in both ferrous and nonferrous industries for evaluating the metallurgical quality of the liquid metal before casting.However,obtaining a proper microstructure ...Thermal analysis technique has been used for a long time,in both ferrous and nonferrous industries for evaluating the metallurgical quality of the liquid metal before casting.However,obtaining a proper microstructure in a standard cup does not ensure that the microstructure is correct in real parts which may solidify at very different cooling rates.For this study,alloy A356 with different metal quality in terms of modification and grain refinement was tested.Different cooling rates were obtained by using cylindrical test samples with various diameters cast in sand and metallic moulds.The correlation between microstructure features such as grain size,modification rate and secondary dendrite arm spacing (SDAS) measured in the standard thermal analysis cup with those obtained in the cylindrical test parts has been investigated.Thus,knowing the thermal modulus and the mould type it is possible to establish the required grain size and modification rate in the standard cup in order to get a desired structure in a real part.Corrective actions can then be taken in order to improve the metallurgical quality before casting the part.展开更多
The microstructure and impact behavior of A356 aluminum alloy were studied after melt treatment processes of grain refinement and modification under both non-heat treated and T6 heat treated conditions. The modificati...The microstructure and impact behavior of A356 aluminum alloy were studied after melt treatment processes of grain refinement and modification under both non-heat treated and T6 heat treated conditions. The modification and grain refinement were done with the addition of Al-10%Sr and Al-5Ti-1B master alloys, respectively. All casting parameters were kept constant in order to focus on the influence of mentioned treatments. The results indicate that the eutectic silicon morphology is the main parameter to control the impact behavior of alloy. Consequently, the individual grain refinement of as-cast alloy does not improve the impact toughness as the modification does. While, simultaneous grain refinement and modification provide higher impact toughness in comparison with individual treatments. T6 heat treatment of the alloy improves the impact toughness under all melt-treated conditions. This is related to the further modification of eutectic silicon particles. To verify the results and clarify the mechanisms, three-point bending test and fractography were used to interpret the improvement of impact toughness of the alloy.展开更多
基金Central Applied Research Laboratory(CARL)Center of Materials ResearchDepartment of Materials Science and Metallurgy,Shahid Bahonar University of Kerman(SBUK)for support of this work。
文摘Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase annular electromagnetic stirring(A-EMS)technique under different conditions.The effects of stirring current,pouring temperature and stirring time on microstructural evolution,mean particle size,shape factor and solid fraction were investigated.The rheocasting process was carried out by using a drop weight setup and to inject the prepared semi-solid slurry in optimal conditions into the step-die cavity.The filling behavior and mechanical properties of parts were studied.Microstructural evolution showed that the best semi-solid slurry which had fine spherical particles with the average size of~27μm and a shape factor of~0.8 was achieved at the stirring current of 70 A,melt pouring temperature of 670℃,and stirring time of 30 s.Under these conditions,the step-die cavity was completely filled at die preheating temperature of 470℃.The hardness increases by decreasing step thickness as well as die preheating temperature.Moreover,the tensile properties are improved at lower die preheating temperatures.The fracture surface,which consists of a complex topography,indicates a typical ductile fracture.
基金Project(3102014KYJD002)supported by the Fundamental Research Funds for the Central Universities of ChinaProjects(50901059,51431008,51134011)supported by the National Natural Science Foundation of China+2 种基金Project(2011CB610403)supported by the National Basic Research Program of ChinaProject(51125002)supported by the China National Funds for Distinguished Young ScientistsProject(JC20120223)supported by the Fundamental Research Fund of Northwestern Polytechnical University,China
文摘The effect of cooling rate of the solidification process on the following solution heat treatment of A356 alloy was investigated,where the cooling rates of 96 K/s and 3 K/s were obtained by the step-like metal mold.Then the eutectic silicon morphology evolution and tensile properties of the alloy samples were observed and analyzed after solution heat treatment at 540 °C for different time.The results show that the high cooling rate of the solidification process can not only reduce the solid solution heat treatment time to rapidly modify the eutectic silicon morphology,but also improve the alloy tensile properties.Specially,it is found that the disintegration,the spheroidization and coarsening of eutectic silicon of A356 alloy are completed during solution heat treatment through two stages,i.e.,at first,the disintegration and spheroidization of the eutectic silicon mainly takes place,then the eutectic silicon will coarsen.
文摘The effect of grain refiner, Mn and Sn additions on the sliding wear behavior of A356 aluminum alloys was investigated. The microstructure and worn surfaces of the studied alloys were characterized by optical microscopy(OM), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). The experimental results indicate that the alloy refined by Al-5Ti-B alloy exhibits equiaxed α(Al) dendrites and performs better wear resistance compared with the alloy without the grain refiner. Moreover, the addition of Mn can change the β-Al5 Fe Si phase to α-Al(Mn,Fe)Si phase and reduce the possibility of crack formation, thus improving the wear resistance. Sn added to A356 aluminum alloy forms Mg2 Sn precipitates after heat treatment. Therefore, the unrealizable precipitation hardening Mg2 Si phase and the softening β-Sn phase can reduce the hardness of the alloy, and finally reduce the wear resistance.
基金Project(2011CB610403)support by the National Basic Research Program of ChinaProjects(51134011,51431008)supported by the National Natural Science Foundation of China+1 种基金Project(JC20120223)supported by the Fundamental Research Fund of Northwestern Polytechnical University,ChinaProject(51125002)supported by the National Funds for Distinguished Young Scientists of China
文摘For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different as-cast microstructures on the subsequent solution-treatment process. The experimental results show that the secondary dendrite arm spacing (SDAS) of primaryα(Al), the size of eutectic Si and the volume fraction of Al?Si eutectic are reduced with increasing the cooling rate. Eutectic Si, subjected to solution treatment at 540 °C for 1 h followed by water quenching to room temperature, is completely spheroidized at cooling rate of 2.6 K/s; is partially spheroidized atcooling rate of 0.6 K/s; and is only edge-rounded at cooling rates of 0.22 and 0.12 K /s. Whilst the microhardness is also the maximum at cooling rate of 2.6 K/s. It consequently suggests that subjected to modification by high cooling rate, the eutectic Si is more readily modified, thus shortening the necessary solution time at given solution temperature, i.e., reducing the product cost.
基金Project (50971087) supported by the National Natural Science Foundation of ChinaProject (11JDG070) supported by the Senior Talent Research Foundation of Jiangsu University, China
文摘The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands including quartz, alumina and chromite into multi-step blocks. The results show that the mechanical properties and microstructures using chromite sand are the best. As the cooling speed increases, the dendrite arm spacing (DAS) decreases significantly and the mechanical properties are improved, and the elongation is more sensitive to the cooling speed as compared with the tensile strength. The increase of the properties is primarily attributed to the decrease of the DAS and the increase of the free strontium atoms in the matrix. In particular, the regression models for predicting both the tensile strength and the elongation for Sr-modified A356 aluminum casting alloy were established based on the experimental data.
基金Project(2006AA03Z115) supported by the National High-tech Research and Development Program of ChinaProject(2011CB606302-1) supported by the National Basic Research Program of ChinaProject(50774007) supported by the National Natural Science Foundation of China
文摘An innovative one-step semi-solid processing technique of A356 Al alloy,the serpentine channel pouring rheo-diecasting process (SCRC),was explored.The mechanical properties and microstructures of the tensile samples made by the SCRC technique were tested in the as-cast and T6 heat treatment conditions.The experimental results show that the as-cast ultimate tensile strength can reach about 250MPa and the elongation is 8.6%?13.2%.The ultimate tensile strength can increase approximately 30% higher than that of the as-cast one but there is some slight sacrifice of the plasticity after T6 heat treatment.Under these experimental conditions,the semi-solid A356 Al alloy slurry with primary α1(Al) grains,which have the shape factor of 0.78?0.89 and the grain diameter of 35?45μm,can be prepared by the serpentine channel pouring process.The primary α2(Al) grains are very fine during the secondary solidification stage.Compared with the conventional HPDC process,the SCRC process can improve the microstructures and mechanical properties of the tensile test samples.The advantages of the SCRC process include easily incorporating with an existing HPDC machine,cancelling the preservation and transportation process of the semi-solid alloy slurry,and a higher cost performance.
基金Project (50774007) supported by the National Natural Science Foundation of ChinaProject (20082022) supported by the Scientific Research Foundation for Doctors from Taiyuan University of Science and Technology, China
文摘The integral microstructure of semisolid A356 alloy slurry with larger capacity cast by serpentine channel was studied and the influence of cooling ability of serpentine channel on the microstructure was investigated. The results indicate that ideal slurry with larger capacity can be prepared through serpentine channel with good cooling ability. When the serpentine channel was continuously cooled, both the longitudinal and the radial microstructure of the slurry was composed of granular primary phase and the integral microstructure uniformity of the slurry was good. However, uncooled serpentine channel can only produce larger slurry with fine grains in positions adjacent to its centre and with a large number of dendrites in positions close to its edge, thus, the radial microstructure of larger slurry is nonuniform. The pouring temperature is set up to 680 °C and the solid shell inside the channel can be avoided at this pouring temperature.
基金Project (2006AA03Z115) supported by the National High-tech Research and Development Program of ChinaProject (2006CB605203) supported by the National Basic Research Program of ChinaProject (50774007) supported by the National Natural Science Foundation of China
文摘Semi-solid A356 aluminum alloy slurry was prepared by using serpentine channel pouring process, and the influences of the channel diameters and pouring temperatures on the semi-solid A356 aluminum alloy slurry were investigated. The experimental results show that when the channel diameter is 20 and 25 mm, respectively, and the pouring temperature is 640-680 ℃, the average diameter of primary α(Al) grains in the prepared A356 aluminum alloy slurry is 50-75 and 55-78 μm, respectively, and the average shape factor of primary α(Al) grains is 0.89-0.76 and 0.86-0.72, respectively. With the decline in the pouring temperature, the microstructure of semi-solid A356 aluminum alloy slurry is more desirable and a serpentine channel with smaller diameter is also advantageous to the microstructure imProvement. During the preparation of semi-solid A356 aluminum alloy slurry, a large number of nuclei can be produced by the chilling effect of the serpentine channel, and owing to the combined effect of the chilled nuclei separation and melt self-stirring, primary α(Al) nuclei can be multiplied and spheroidized finally.
基金Project(2011ZX04001-031)supported by National Science and Technology Major Project of"High-end CNC Machine Tools and Basic Manufacturing Equipment",ChinaProject(51371109)supported by the National Natural Science Foundation of China
文摘The instrumented applied rod casting apparatus (ARCA) was developed to investigate the effects of tensile forces in the hot tearing formation of cast AI-Si alloys. The obtained data of tensile forces/temperature was used to identify hot tearing initiation and propagation and the fracture surface of samples was also investigated. The result shows that the applied tensile forces have a complex effect on load onset for the hot tearing initiation and propagation. During the casting solidification, the tensile forces are gradually increased with the increase of solid fraction. Under the action of tensile forces, there will appear hot tearing and crack propagation on the surface of the sample. When the tensile forces exceed the inherent strength of alloys, there will be fractures on the sample. As for the A356 alloy, the critical fracture stress is about 0.1 MPa. The hot tearing surface morphology shows that the remaining intergranular bridge and liquid films are thick enough to allow the formation of dendrite-tip bumps on the fracture surface.
文摘Experimental study of the effect of wear parameters on the wear behaviour of A356 alloy reinforced with cow horn particles(CHp) produced by spark plasma sintering was investigated. Experiments were conducted based on the plan of experiments generated through Taguchi's(L9) technique. Tribometer was used for the wear test and Scanning electron microscope was used to analyse the worn scar of the samples. The results shows that, A356 alloy reinforced with CHp exhibited better dry sliding wear resistance than the unreinforced alloy. Wear rate decreased as the amount of CHp reinforcement increased in the matrix. It was found that, the optimum level of the factors with minimized the wear loss were obtained at: wt%CHp(20%), applied load(10 N), sliding velocity(3 m/s) and sliding distance(2000 m). It can be seen that the wear track of the sample are(D ? 0.81 and L = 42.85 mm) and(D ? 0.54 and L= 27.03 mm) for A356 alloy and composites at optimum condition respectively. The results showed that the addition of cow horn particles as reinforcing materials in A356 alloy composites increased the wear resistance of the composites greatly.
基金Projects(51071066,51671084)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0172)supported by the Program for New Century Excellent Talents in University,Ministry of Education,China
文摘Plasma electrolytic oxidation of a cast A356 aluminum alloy was carried out in aluminate electrolytes to develop wear and corrosion resistant coatings. Different concentrations of 2, 16 and 24 g/L NaAlO2 solutions and a silicate electrolyte (for comparison) were employed for the investigation. Wear performance and corrosion resistance of the coatings were evaluated by WC (tungsten carbide) ball-on-flat dry sliding tests and electrochemical methods, respectively. The results show that the coating formed for a short duration of 480 s in 24 g/L NaAlO2 solution generated the best protection. The coating sustained 30 N load for sliding time of 1800 s, showing very low wear rate of -4.5×10^-7 mm3/(N· m). A low corrosion current density of -8.81×10^-9 A/cm2 was also recorded. Despite low α-Al2O3 content of the coating, the compact and nearly single layer nature of the coating guaranteed the excellent performances.
基金Project(51204109)supported by the National Natural Science Foundation of China
文摘In order to decrease the metallurgical porosity and keyhole-induced porosity during deep penetration laser welding of Al and its alloys, and increase the mechanical properties of work-piece, the effects of welding parameters such as laser power, welding speed and defocusing value on both kinds of porosities were systemically analyzed respectively, and the shape and fluctuation of plume of the keyhole were observed to reflect the stability of the keyhole. The results show that increasing laser power or decreasing laser spot size can lead to the rising of both number and occupied area of pores in the weld; meanwhile, the plume fluctuates violently over the keyhole, which is always companied with the intense metallic vapor, liquid metal spatter and collapsing in the keyhole, thus more pores are generated in the weld. The porosity in the weld reaches the minimum at welding velocity of 2.0 m/min when laser power is 5 kW and defocusing value is 0.
基金the Natural Science Foundation of Jiangxi Province, China (No. 0650047)
文摘The semi-solid slurry of an A356 Al alloy, which was grain-fined by yttrium, was manufactured by low temperature pouring, The effects of grain-refining on the morphology and the grain size of the primary α phase in the semi-solid A356 Al alloy were researched. The results indicate that the semi-solid A356 AI alloy with particle-like and rosette-like primary α-Al can be prepared by low temperature pouring from a liquid grain-refined A356 alloy. The grain size and particle morphology of primary α-Al in the A356 Al alloy are markedly improved by the addition of 0.5 wt,% Y. The fining mechanism of Y on the morphology and grain size of the primary α-Al in the semi-solid A356 Al alloy was delved.
基金The project was financially supported by the Hi-tech Research and Development Program of China (No. G2002AA336080) and the National Natural Science Foundation of China (No. 50374012)
文摘The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were investigated. The results indicated that the semi-solid slurry to satisfy rheocasting can be manufactured by low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power remarkably affected the morphology of primary α-Al and the size of primary α-Al, and there is no obvious effect of stirring time on primary α-Al. Compared with the samples made by low superheat pouring with no stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 were markedly improved by low superheat pouring and weak electromagnetic stirring. On the condition of weak electromagnetic stirring, the pouring temperature with low superheat can be suitably raised to reach the effectiveness obtained from the lower pouring temperature without stirring.
基金financially supported by National High Technical Research and Development Program of China(No.G2002AA336080)National Natural Science Foundation of China(No.50374012)Natural Science Foundation of Jiangxi Province(No.0650047).
文摘The semi-solid slurry of A356 alloy, which is grain-refined by Al-Ti-B master alloy, is prepared by low superheat pouring and slight electromagnetic stirring. The effects of grain refining on the morphology and the grain size of the primary α phase in the slurry manufactured are researched. The results indicate that the slurry with particle-like and rosette-like primary α phases can be prepared by low superheat pouring and slight electromagnetic stirring from liquid A356 alloy grain-refined, in which the pouring temperature can be suitably raised. Compared with the A356 samples without grain refining, the grain size and particle morphology of primary α phase as well as the distribution of the grain with particle-like or rosette-like along radial in the ingot in A356 are markedly improved by grain refining.
基金the financial supports from the National Natural Science Foundation of China(Nos.52005034,52027805)the Beijing Postdoctoral Research Foundation(No.2021-ZZ-073)+2 种基金the China Postdoctoral Science Foundation Funded Project(2021M691860)the Fundamental Research Funds for the Central Universities(No.FRF-TP-18-043A1)the Zhuhai Industry-University-Research Cooperation Project(No.ZH22017001200176PWC).
文摘A new technique for preparing semisolid slurry,namely,distributary-confluence runner(DCR),was combined with die-casting(DC)to conduct rheological die-casting(R-DC)of A356 alloy.The mechanism of DCR for semisolid slurry preparation was determined via numerical simulations and experiments.The microstructure and mechanical properties of A356 alloys prepared via DC and R-DC were studied.High-quality slurry containing numerous primary α-Al(α1-Al)with an average size of 49μm and a shape factor of 0.81 could be prepared via DCR.Simulation results indicated that the unique flow state and physical field changes during slurry preparation were conducive to accelerating the uniformity of melt temperature and composition fields,nucleation exfoliation,and spherical growth.Compared with the alloy prepared via DC,the tensile strength,yield strength,and elongation of A356 alloy prepared via R-DC increased by 19%,15%,and 107%,respectively.
基金supported by the National Natural Science Foundation of China(No.51204124)the China Postdoctoral Science Foundation(No.2012M511610)the Scientific Research Foundation of Wuhan Institute of Technology(No.14125041)
文摘To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the fi lling of the molten metal is not stable; and the casting does not follow the sequence solidifi cation, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the fi lling time is prolonged from 4.0 s to 4.5 s, the fi lling of molten metal becomes stable, but this casting does not follow the sequence solidifi cation either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced.
文摘The effects of Mg and semi solid processing on the creep properties ofA356 A1 alloy were investigated. The results show that the dislocation climb controlled creep is the dominant creep mechanism and it is not affected by the semi solid processing and further addition of Mg. Mg improves the alloy creep properties probably by forming large Chinese script Mg2Si compounds at the interdendritic regions. The semi solid processed specimens exhibit better creep properties in comparison with the as cast ones. It is attributed to the reduction in the stacking fault energy resulting from the significant dissolution of Mg in the a(A1) phase.
基金supported by the Basque Government (Project:Manufacturing 0.0 Etortek 2008)Spanish Government (Singular Strategic Project,PSE integrAuto)
文摘Thermal analysis technique has been used for a long time,in both ferrous and nonferrous industries for evaluating the metallurgical quality of the liquid metal before casting.However,obtaining a proper microstructure in a standard cup does not ensure that the microstructure is correct in real parts which may solidify at very different cooling rates.For this study,alloy A356 with different metal quality in terms of modification and grain refinement was tested.Different cooling rates were obtained by using cylindrical test samples with various diameters cast in sand and metallic moulds.The correlation between microstructure features such as grain size,modification rate and secondary dendrite arm spacing (SDAS) measured in the standard thermal analysis cup with those obtained in the cylindrical test parts has been investigated.Thus,knowing the thermal modulus and the mould type it is possible to establish the required grain size and modification rate in the standard cup in order to get a desired structure in a real part.Corrective actions can then be taken in order to improve the metallurgical quality before casting the part.
文摘The microstructure and impact behavior of A356 aluminum alloy were studied after melt treatment processes of grain refinement and modification under both non-heat treated and T6 heat treated conditions. The modification and grain refinement were done with the addition of Al-10%Sr and Al-5Ti-1B master alloys, respectively. All casting parameters were kept constant in order to focus on the influence of mentioned treatments. The results indicate that the eutectic silicon morphology is the main parameter to control the impact behavior of alloy. Consequently, the individual grain refinement of as-cast alloy does not improve the impact toughness as the modification does. While, simultaneous grain refinement and modification provide higher impact toughness in comparison with individual treatments. T6 heat treatment of the alloy improves the impact toughness under all melt-treated conditions. This is related to the further modification of eutectic silicon particles. To verify the results and clarify the mechanisms, three-point bending test and fractography were used to interpret the improvement of impact toughness of the alloy.