Friction stir butt welding of AA7075-T651 plates with thicknesses of 10 and 16 mm was investigated. Defect-free, full- penetration welds were obtained after careful process parameter selection. While the nuggets in bo...Friction stir butt welding of AA7075-T651 plates with thicknesses of 10 and 16 mm was investigated. Defect-free, full- penetration welds were obtained after careful process parameter selection. While the nuggets in both welds exhibited very fine reerystallized grains, and finer grains were observed in welds made on 10 mm thick plates. Microhardness surveys revealed that significant loss in hardness occurs in the heat-affected zone. The reduction in hardness due to the welding process is higher in the case of welds made on 16 mm thick plates. Welds made on 10 mm thick plates exhibited superior tensile properties compared with those made on 16 mm thick plates. Fracture during tensile test occurred in the heat-affected zone in both cases. TEM images of specimens revealed that the heat-affected zone consisted of widened precipitate-free zones along grain boundaries and partial dissolution of precipitates in the grain interiors. It is concluded that defect-free single pass welds can be made on AA7075-T651 thick plates using friction stir welding and the welds made on 10 mm thick plates exhibit high joint efficiency.展开更多
The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic com...The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic compression, dynamic compression experiments using the Hopkinson bar under four groups of strain rates were conducted, and the temperature signals were measured by constructing a transient infrared temperature measurement system. According to stress versus strain data as well as the corresponding temperature data obtained through the experiments, the influences of the strain and the strain rate on the coefficient of plastic work converted to heat were analyzed.The experimental results show that the coefficient of plastic work converted to heat of 7075-T651 aluminum alloy is not a constant at the range of 0.85–1 and is closely related to the strain and the strain rate. The change of internal structure of material under high strain rate reduces its energy storage capacity, and makes almost all plastic work convert into heat.展开更多
Metal inert gas(MIG)welding was conducted with 12 mm thick 6082-T651 aluminum alloy plate to investigate the microstructure and mechanical properties of welded joint.The microstructure and element distribution of weld...Metal inert gas(MIG)welding was conducted with 12 mm thick 6082-T651 aluminum alloy plate to investigate the microstructure and mechanical properties of welded joint.The microstructure and element distribution of weld seam were characterized by electron backscattered diffraction(EBSD)and electron probe microanalysis(EPMA).The weld seam has typical cube texture({001}<100>)characteristics.The closer to the center of weld seam,the weaker the texture feature,the higher the proportion of high-angle grain boundaries.The average tensile strength of joint was 232 MPa which is up to 72%of 6082 aluminum alloy base metal,and the bending angle for the root bend test sample reached 90°without cracks.The lack of strengthening phase and the existence of welding pores and inclusions in the weld seam caused the degradation of mechanical properties of resultant joint.The microhardness increased from the weld center to the base metal,but the overaging zone caused by welding thermal cycle was softening part of the joint,which had lower hardness than the weld seam.展开更多
The effects of applying an electromagnetic interaction of low intensity (EMILI) on the microstructure and corrosion resistance of 7075-T651 Al alloy plates (13 mm in thickness) during modified indirect electric arc (M...The effects of applying an electromagnetic interaction of low intensity (EMILI) on the microstructure and corrosion resistance of 7075-T651 Al alloy plates (13 mm in thickness) during modified indirect electric arc (MIEA) welding were investigated. The welding process was conducted in a single pass with a heat input of ~1.5 kJ/mm. The microstructural observations of the welds were correlated with the effect of EMILI on the local mechanical properties and the corrosion resistance in natural seawater by means of microhardness measurements and electrochemical impedance spectroscopy, respectively. Microstructural characterization of the welds revealed a grain refinement in the weld metal due to the electromagnetic stirring induced by EMILI of 3 mT during welding. In addition, observations in the scanning electron microscope showed that the precipitation of Cu-rich phases and segregation of eutectics were reduced in the heat affected zone (HAZ) also as an effect of EMILI. The high corrosion dissolution of the 7075-T651 welds in natural seawater and the extent of overaging in the HAZ were reduced when welding with EMILI of 3 mT. Thus, EMILI along with the MIEA technique may lead to welded joints with better microstructural characteristics, improved mechanical properties in the HAZ and reduced electrochemical activity.展开更多
In this work, the morphologies of weld of 7075-T6 aluminum alloy via friction stir welding (FSW) were analyzed by optical microscopy, the temperature field was attained by numerical simulation, and the effect of tem...In this work, the morphologies of weld of 7075-T6 aluminum alloy via friction stir welding (FSW) were analyzed by optical microscopy, the temperature field was attained by numerical simulation, and the effect of temperature on material transfer behavior in the thermal-mechanical affected zone (TMAZ) at different stages was mainly investigated. The FSW process consists of three stages. It is very interesting to find that the maximum transfer displacement of material appears at the final stage of welding process, then at the stable stage and at the initial stage, which results from the difference of peak temperatures at different stages. At any stage, the material in TMAZ near the surface of weld transfers downwards, the material in the middle of weld moves upwards and the material near the bottom of weld hardly moves. In any cross section of weld, the largest transfer displacement of material appears in the middle of weld. The increase of rotational velocity and the decrease of welding speed are both beneficial to the transfer displacement of material in the middle of weld.展开更多
基金financial support from Armament Research Board,DRDO,Ministry of Defence,India,through a R&D project No.ARMREB/MAA/ 2012/142
文摘Friction stir butt welding of AA7075-T651 plates with thicknesses of 10 and 16 mm was investigated. Defect-free, full- penetration welds were obtained after careful process parameter selection. While the nuggets in both welds exhibited very fine reerystallized grains, and finer grains were observed in welds made on 10 mm thick plates. Microhardness surveys revealed that significant loss in hardness occurs in the heat-affected zone. The reduction in hardness due to the welding process is higher in the case of welds made on 16 mm thick plates. Welds made on 10 mm thick plates exhibited superior tensile properties compared with those made on 16 mm thick plates. Fracture during tensile test occurred in the heat-affected zone in both cases. TEM images of specimens revealed that the heat-affected zone consisted of widened precipitate-free zones along grain boundaries and partial dissolution of precipitates in the grain interiors. It is concluded that defect-free single pass welds can be made on AA7075-T651 thick plates using friction stir welding and the welds made on 10 mm thick plates exhibit high joint efficiency.
基金supported by the National Nature Science Foundation of China (Grants 11132011 and 11472288)
文摘The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic compression, dynamic compression experiments using the Hopkinson bar under four groups of strain rates were conducted, and the temperature signals were measured by constructing a transient infrared temperature measurement system. According to stress versus strain data as well as the corresponding temperature data obtained through the experiments, the influences of the strain and the strain rate on the coefficient of plastic work converted to heat were analyzed.The experimental results show that the coefficient of plastic work converted to heat of 7075-T651 aluminum alloy is not a constant at the range of 0.85–1 and is closely related to the strain and the strain rate. The change of internal structure of material under high strain rate reduces its energy storage capacity, and makes almost all plastic work convert into heat.
基金Project was supported by the National Natural Science Foundation of China(51674060)the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning。
文摘Metal inert gas(MIG)welding was conducted with 12 mm thick 6082-T651 aluminum alloy plate to investigate the microstructure and mechanical properties of welded joint.The microstructure and element distribution of weld seam were characterized by electron backscattered diffraction(EBSD)and electron probe microanalysis(EPMA).The weld seam has typical cube texture({001}<100>)characteristics.The closer to the center of weld seam,the weaker the texture feature,the higher the proportion of high-angle grain boundaries.The average tensile strength of joint was 232 MPa which is up to 72%of 6082 aluminum alloy base metal,and the bending angle for the root bend test sample reached 90°without cracks.The lack of strengthening phase and the existence of welding pores and inclusions in the weld seam caused the degradation of mechanical properties of resultant joint.The microhardness increased from the weld center to the base metal,but the overaging zone caused by welding thermal cycle was softening part of the joint,which had lower hardness than the weld seam.
文摘The effects of applying an electromagnetic interaction of low intensity (EMILI) on the microstructure and corrosion resistance of 7075-T651 Al alloy plates (13 mm in thickness) during modified indirect electric arc (MIEA) welding were investigated. The welding process was conducted in a single pass with a heat input of ~1.5 kJ/mm. The microstructural observations of the welds were correlated with the effect of EMILI on the local mechanical properties and the corrosion resistance in natural seawater by means of microhardness measurements and electrochemical impedance spectroscopy, respectively. Microstructural characterization of the welds revealed a grain refinement in the weld metal due to the electromagnetic stirring induced by EMILI of 3 mT during welding. In addition, observations in the scanning electron microscope showed that the precipitation of Cu-rich phases and segregation of eutectics were reduced in the heat affected zone (HAZ) also as an effect of EMILI. The high corrosion dissolution of the 7075-T651 welds in natural seawater and the extent of overaging in the HAZ were reduced when welding with EMILI of 3 mT. Thus, EMILI along with the MIEA technique may lead to welded joints with better microstructural characteristics, improved mechanical properties in the HAZ and reduced electrochemical activity.
基金the National Natural Science Foundation of China (No.51204111)the Education Department Foundation of Liaoning Province (No.L2012047)the State Key Lab of Advanced Welding and Joining in Harbin Institute of Technology (AWJ-M13-07)
文摘In this work, the morphologies of weld of 7075-T6 aluminum alloy via friction stir welding (FSW) were analyzed by optical microscopy, the temperature field was attained by numerical simulation, and the effect of temperature on material transfer behavior in the thermal-mechanical affected zone (TMAZ) at different stages was mainly investigated. The FSW process consists of three stages. It is very interesting to find that the maximum transfer displacement of material appears at the final stage of welding process, then at the stable stage and at the initial stage, which results from the difference of peak temperatures at different stages. At any stage, the material in TMAZ near the surface of weld transfers downwards, the material in the middle of weld moves upwards and the material near the bottom of weld hardly moves. In any cross section of weld, the largest transfer displacement of material appears in the middle of weld. The increase of rotational velocity and the decrease of welding speed are both beneficial to the transfer displacement of material in the middle of weld.