Semi-quantitative electron probe microanalysis (EPMA) mapping, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the effect of one-step and two-step treatments ...Semi-quantitative electron probe microanalysis (EPMA) mapping, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the effect of one-step and two-step treatments on the Zr distribution and Al3Zr dispersoid characteristics in as-cast commercial AA7150 aluminum alloy. It is shown that the Zr concentration in the dendrite centre regions is higher than that near the dendrite edges in the as-cast condition, and that homogenization at 460 °C for 20 h is insufficient to remove these concentration gradients. After homogenizing at 460-480 °C, a high number density of larger dispersoids can be observed in dendrite centre regions but not near dendrite edges. Furthermore, the dispersoid size increases with increasing the temperature during both one-step and two-step homogenization treatments.展开更多
Studies show that the proper solid solution treatment(SST)is a key step in the precipitation strengthening of AA7150 Al alloy.Despite the superior characteristics of the fully dissolved phase,it has major drawbacks,in...Studies show that the proper solid solution treatment(SST)is a key step in the precipitation strengthening of AA7150 Al alloy.Despite the superior characteristics of the fully dissolved phase,it has major drawbacks,including high consumption of energy and low efficiency.Recently,electropulsing treatment(EPT)has been proposed to study dissolved precipitations and modify microstructures of AA7150 Al alloy faster than conventional SST.Experiments have been conducted in the present article,and the obtained results show that EPT can promote the rapid dissolution of theη’phase at relatively low temperatures in only 20 s.Meanwhile,the strength and ductility of electropulsed samples decrease drastically.Compared with conventional SST,EPT accelerates recrystallization and obtains relatively fine grains after 20 and 50 s electric pulses.Moreover,as the EPT time increases,the corresponding non-uniform local heating and the electron force promote dislocation generation and annihilation.展开更多
文摘Semi-quantitative electron probe microanalysis (EPMA) mapping, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the effect of one-step and two-step treatments on the Zr distribution and Al3Zr dispersoid characteristics in as-cast commercial AA7150 aluminum alloy. It is shown that the Zr concentration in the dendrite centre regions is higher than that near the dendrite edges in the as-cast condition, and that homogenization at 460 °C for 20 h is insufficient to remove these concentration gradients. After homogenizing at 460-480 °C, a high number density of larger dispersoids can be observed in dendrite centre regions but not near dendrite edges. Furthermore, the dispersoid size increases with increasing the temperature during both one-step and two-step homogenization treatments.
基金financially supported by the Fundamental Research Funds for the National Key R&D Program of China(No.2017YFB0306300)the Hunan Provincial Innovation Foundation for Postgraduate(No.CX20200185)+1 种基金the Fundamental Research Funds for the Central Universities of Central South University(No.2020zzts098)the National Natural Science Foundation of China(Nos.19055551,51675538 and 51601060)。
文摘Studies show that the proper solid solution treatment(SST)is a key step in the precipitation strengthening of AA7150 Al alloy.Despite the superior characteristics of the fully dissolved phase,it has major drawbacks,including high consumption of energy and low efficiency.Recently,electropulsing treatment(EPT)has been proposed to study dissolved precipitations and modify microstructures of AA7150 Al alloy faster than conventional SST.Experiments have been conducted in the present article,and the obtained results show that EPT can promote the rapid dissolution of theη’phase at relatively low temperatures in only 20 s.Meanwhile,the strength and ductility of electropulsed samples decrease drastically.Compared with conventional SST,EPT accelerates recrystallization and obtains relatively fine grains after 20 and 50 s electric pulses.Moreover,as the EPT time increases,the corresponding non-uniform local heating and the electron force promote dislocation generation and annihilation.