This article presents a semi-Markov process based approach to optimally select a portfolio consisting of credit risky bonds.The criteria to optimize the credit portfolio is based on l_(∞)-norm risk measure and the pr...This article presents a semi-Markov process based approach to optimally select a portfolio consisting of credit risky bonds.The criteria to optimize the credit portfolio is based on l_(∞)-norm risk measure and the proposed optimization model is formulated as a linear programming problem.The input parameters to the optimization model are rate of returns of bonds which are obtained using credit ratings assuming that credit ratings of bonds follow a semi-Markov process.Modeling credit ratings by semi-Markov processes has several advantages over Markov chain models,i.e.,it addresses the ageing effect present in the credit rating dynamics.The transition probability matrices generated by semi-Markov process and initial credit ratings are used to generate rate of returns of bonds.The empirical performance of the proposed model is analyzed using the real data.Further,comparison of the proposed approach with the Markov chain approach is performed by obtaining the efficient frontiers for the two models.展开更多
At present,further research and exploration on credit risks are being carried out in the global field,and increasingly profound modem credit risks are exposed to the bond market.This requires that we cannot ignore the...At present,further research and exploration on credit risks are being carried out in the global field,and increasingly profound modem credit risks are exposed to the bond market.This requires that we cannot ignore the impact of credit rating migration risk on bond pricing,so as to adapt to the sustainable and healthy development of the bond market under the new normal of China's economy.The innovation point of this paper is to try to analyze the pricing of Convertible bonds in China from the perspective of credit rating migration risk.Tsiveriotis and Femandes(1998)model is selected,and the credit risk in the model is assumed to be caused by the credit rating migration risk,and the credit spread is used to measure the credit rating migration risk.The research conclusion of this paper is as follows:First,it is valid to consider the risk of credit rating migration in the TF(1998)model.The market price of convertible bonds is on average 1.22% higher 1han the theoretical value of the model.In general,the theoretical value obtained from the model has little deviation from the market price,and has a good fitting degree.Second,from the Angle of credit rating,the selection of 32 samples of convertible bonds only empirical research shows that the credit rating of AA-convertible bonds average deviation rate is negative,suggest that the credit rating of AA-the phenomenon of convertible bonds value is underestimated,and AAA credit rating to AA,AA+,the average deviation rate of convertible bonds is positive,that credit rating AA(containing AA)more convertible bond value is overrated phenomenon,and the higher the credit rating of the average deviation rate of convertible bond,the greater the overvalued levels.It has certain guiding significance for participants in the convertible bond market.展开更多
With the increase of China’s bond issuance and slowdown of the economic growth,the potential credit risks such as bond default in the bond market are gradually emerging.The frequent occurrence of bond defaults and th...With the increase of China’s bond issuance and slowdown of the economic growth,the potential credit risks such as bond default in the bond market are gradually emerging.The frequent occurrence of bond defaults and the problem of false credit ratings make bond investors and market participants more cautious about the credit ratings issued by rating agencies.Based on the default bonds from 2016 to 2019,this paper analyzes the adjustment of rating of defaulted bonds by rating agencies before default.It also compares the impact of both the regulatory events and the entrance of international agencies on timeless of credit ratings on default bonds.At the same time,the divergence of rating timeliness between different rating agencies is compared.The research shows that after the unified supervision of regulators and the punishment of Dagong Global Credit Rating Co.Ltd in 2018,the timeliness of rating agencies'downgrading of defaulted bonds has increased significantly;Compared with other rating agencies,the timeliness of rating agencies owned by international rating agencies are better.展开更多
Requested by Ministry of Commerce of China and SASAC (State-owned Assets Supervision and Administration Commission of the State Council), the credit evaluation of refractories enterprises was carried out by The Asso...Requested by Ministry of Commerce of China and SASAC (State-owned Assets Supervision and Administration Commission of the State Council), the credit evaluation of refractories enterprises was carried out by The Association of China Refractories Industry based on the principle of open, justice, and impartiality. Thirty one enterprises were awarded AAA-level credit including Sinosteel Luoyang Institute of Refractories Research Co., Ltd. (LIRR).展开更多
China’s credit bond market has rapidly expanded in recent years.However,since 2014,the number of credit bond defaults has been increasing rapidly,posing enormous potential risks to the stability of the financial mark...China’s credit bond market has rapidly expanded in recent years.However,since 2014,the number of credit bond defaults has been increasing rapidly,posing enormous potential risks to the stability of the financial market.This study proposed a deep learning approach to predict credit bond defaults in the Chinese market.A convolutional neural network(CNN)was selected as the classification model and to reduce the extreme imbalance between defaulted and non-defaulted bonds,and a generative adversarial network(GAN)was used as the oversampling model.Based on 31 financial and 20 non-financial indicators,we collected Wind data on all credit bonds issued and matured or defaulted from 2014 to 2021.The experimental results showed that our GAN+CNN approach had superior predictive performance with an area under the curve(AUC)of 0.9157 and precision of 0.8871 compared to previous research and other commonly used classification models-including the logistic regression,support vector machine,and fully connected neural network models-and oversampling techniques-including the synthetic minority oversampling technique(SMOTE)and Borderline SMOTE model.For one-year predictions,indicators of solvency,capital structure,and fundamental properties of bonds are proved to be the most important indicators.展开更多
文摘This article presents a semi-Markov process based approach to optimally select a portfolio consisting of credit risky bonds.The criteria to optimize the credit portfolio is based on l_(∞)-norm risk measure and the proposed optimization model is formulated as a linear programming problem.The input parameters to the optimization model are rate of returns of bonds which are obtained using credit ratings assuming that credit ratings of bonds follow a semi-Markov process.Modeling credit ratings by semi-Markov processes has several advantages over Markov chain models,i.e.,it addresses the ageing effect present in the credit rating dynamics.The transition probability matrices generated by semi-Markov process and initial credit ratings are used to generate rate of returns of bonds.The empirical performance of the proposed model is analyzed using the real data.Further,comparison of the proposed approach with the Markov chain approach is performed by obtaining the efficient frontiers for the two models.
文摘At present,further research and exploration on credit risks are being carried out in the global field,and increasingly profound modem credit risks are exposed to the bond market.This requires that we cannot ignore the impact of credit rating migration risk on bond pricing,so as to adapt to the sustainable and healthy development of the bond market under the new normal of China's economy.The innovation point of this paper is to try to analyze the pricing of Convertible bonds in China from the perspective of credit rating migration risk.Tsiveriotis and Femandes(1998)model is selected,and the credit risk in the model is assumed to be caused by the credit rating migration risk,and the credit spread is used to measure the credit rating migration risk.The research conclusion of this paper is as follows:First,it is valid to consider the risk of credit rating migration in the TF(1998)model.The market price of convertible bonds is on average 1.22% higher 1han the theoretical value of the model.In general,the theoretical value obtained from the model has little deviation from the market price,and has a good fitting degree.Second,from the Angle of credit rating,the selection of 32 samples of convertible bonds only empirical research shows that the credit rating of AA-convertible bonds average deviation rate is negative,suggest that the credit rating of AA-the phenomenon of convertible bonds value is underestimated,and AAA credit rating to AA,AA+,the average deviation rate of convertible bonds is positive,that credit rating AA(containing AA)more convertible bond value is overrated phenomenon,and the higher the credit rating of the average deviation rate of convertible bond,the greater the overvalued levels.It has certain guiding significance for participants in the convertible bond market.
文摘With the increase of China’s bond issuance and slowdown of the economic growth,the potential credit risks such as bond default in the bond market are gradually emerging.The frequent occurrence of bond defaults and the problem of false credit ratings make bond investors and market participants more cautious about the credit ratings issued by rating agencies.Based on the default bonds from 2016 to 2019,this paper analyzes the adjustment of rating of defaulted bonds by rating agencies before default.It also compares the impact of both the regulatory events and the entrance of international agencies on timeless of credit ratings on default bonds.At the same time,the divergence of rating timeliness between different rating agencies is compared.The research shows that after the unified supervision of regulators and the punishment of Dagong Global Credit Rating Co.Ltd in 2018,the timeliness of rating agencies'downgrading of defaulted bonds has increased significantly;Compared with other rating agencies,the timeliness of rating agencies owned by international rating agencies are better.
文摘Requested by Ministry of Commerce of China and SASAC (State-owned Assets Supervision and Administration Commission of the State Council), the credit evaluation of refractories enterprises was carried out by The Association of China Refractories Industry based on the principle of open, justice, and impartiality. Thirty one enterprises were awarded AAA-level credit including Sinosteel Luoyang Institute of Refractories Research Co., Ltd. (LIRR).
基金supported in part by the Emerging Interdisciplinary Project of Central University of Finance and Economics,Beijing,China.
文摘China’s credit bond market has rapidly expanded in recent years.However,since 2014,the number of credit bond defaults has been increasing rapidly,posing enormous potential risks to the stability of the financial market.This study proposed a deep learning approach to predict credit bond defaults in the Chinese market.A convolutional neural network(CNN)was selected as the classification model and to reduce the extreme imbalance between defaulted and non-defaulted bonds,and a generative adversarial network(GAN)was used as the oversampling model.Based on 31 financial and 20 non-financial indicators,we collected Wind data on all credit bonds issued and matured or defaulted from 2014 to 2021.The experimental results showed that our GAN+CNN approach had superior predictive performance with an area under the curve(AUC)of 0.9157 and precision of 0.8871 compared to previous research and other commonly used classification models-including the logistic regression,support vector machine,and fully connected neural network models-and oversampling techniques-including the synthetic minority oversampling technique(SMOTE)and Borderline SMOTE model.For one-year predictions,indicators of solvency,capital structure,and fundamental properties of bonds are proved to be the most important indicators.