At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages...At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages of low hydrogen storage capacity and poor kinetics of hydrogen storage materials,our primary focus is to achieve smooth hydrogen ab-/desorption over a wide temperature range to meet the requirements of fuel cells and their integrated power generation systems.In this paper,the Ti_(0.9)Zr_(0.1)Mn_(1.45)V_(0.4)Fe_(0.15) hydrogen storage alloy was successfully prepared by arc melting.The maximum hydrogen storage capacity reaches 1.89 wt% at 318 K.The alloy has the capability to absorb 90% of hydrogen storage capacity within 50 s at 7 MPa and release 90% of hydrogen within 220 s.Comsol Multiphysics 6.0 software was used to simulate the hydrogen ab-/desorption processes of the tank.The flow rate of cooling water during hydrogen absorption varied in a gradient of(0.02 t x)m s^(-1)(x=0,0.02,0.04,0.06,0.08,0.1,0.12).Cooling water flow rate is positively correlated with the hydrogen absorption rate but negatively correlated with the cost.When the cooling rate is 0.06 m s^(-1),both simulation and experimentation have shown that the hydrogen storage tank is capable of steady hydrogen desorption for over 6 h at a flow rate of 2 L min^(-1).Based on the above conclusions,we have successfully developed a hydrogen-assisted two-wheeler with a range of 80 km and achieved regional demonstration operations in Changzhou and Shaoguan.This paper highlights the achievements of our team in the technological development of fuel cell power generation systems using solid hydrogen storage materials as hydrogen storage carriers and their application in twowheelers in recent years.展开更多
The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehy...The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehydrogenation dynamics of alloys were compared.The results show that the as-milled composites contain a large number of amorphous embedded by a small amount of nanocrystals,and there are many point defects.After ball milling,the crystal grain size in the composites containing CoS is relatively larger,followed by CoS_(2)and MoS_(2)again.After hydrogenation,the amorphous phase is crystallized to form Mg_(2)NiH_(4),YH_(3),Pr_(8)H_(18.96),Sm_(3)H_7,Mg,Co or Mo phases,however,Mg_(2)Ni,YH_(2),PrH_(2)and Ni_(3)Y phases appeared after dehydrogenation.The maximum hydrogenation capacity of the composites containing CoS,CoS_(2)and MoS_(2)are 3.939,4.265 and 4.507 wt.%,respectively.The hydrogenation saturation ratio of composite containing MoS_(2)is higher than that of the composites containing CoS and CoS_(2).The dehydrogenation activation energy of the composites containing CoS,CoS_(2)and MoS_(2)is 107.76,68.43 and 63.28 kJ.mol^(-1).H_(2).On the improvement of hydrogen storage performance of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)alloy,the catalytic effect of MoS_(2)sulfide is better than that of CoS_(2)sulfide,and which is better than CoS sulfide.展开更多
In order to improve the hydrogen storage kinetics of the Mg2Ni-type alloys, Ni in the alloy was partially substituted with element Co. The Mg2Ni-type Mg2Ni1-xCox (x=0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by m...In order to improve the hydrogen storage kinetics of the Mg2Ni-type alloys, Ni in the alloy was partially substituted with element Co. The Mg2Ni-type Mg2Ni1-xCox (x=0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt-spinning technique. The structures of the as-spun alloys were characterized by XRD and TEM. The gaseous and electrochemical hydrogen storage kinetics of the alloys was measured. The results show that the substitution of Co for Ni notably enhances the glass forming ability of the Mg2Ni-type alloy. The amorphization degree of the alloys visibly increases with rising of Co content. Furthermore, the substitution of Co for Ni significantly improves the hydrogen storage kinetics of the alloys. With an increase in the amount of Co substitution from 0 to 0.4, the hydrogen absorption saturation ratio of the as-spun (15 m/s) alloy increases from 81.2% to 84.9%, the hydrogen desorption ratio from 17.60% to 64.79%, the hydrogen diffusion coefficient increases from 1.07×10-11 to 2.79×10-11 cm2/s and the limiting current density increases from 46.7 to 191.7 mA/g, respectively.展开更多
The nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1-xMnx (x=0, 0.1, 0.2, 0.3, 0.4) were synthesized by melt-spinning technique. The spun alloy ribbons with a continuous length, a ...The nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1-xMnx (x=0, 0.1, 0.2, 0.3, 0.4) were synthesized by melt-spinning technique. The spun alloy ribbons with a continuous length, a thickness of about 30 μm and a width of about 25 mm are obtained. The structures of the as-spun alloy ribbons were characterized by XRD and HRTEM. The electrochemical hydrogen storage characteristics of the as-spun alloy ribbons were measured by an automatic galvanostatic system. The electrochemical impedance spectrums (EIS) were plotted by an electrochemical workstation. The hydrogen diffusion coefficients (D) in the alloys were calculated by virtue of potential-step measurement. The results show that all the as-spun (x=0) alloys hold a typical nanocrystalline structure, whereas the as-spun (x=0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni facilitates the glass formation in the Mg2Ni-type alloy. The substitution of Mn for Ni significantly improves the electrochemical hydrogen storage performances of the alloys, involving the discharge capacity and the electrochemical cycle stability. With an increase in the amount of Mn substitution from 0 to 0.4, the discharge capacity of the as-spun (20 m/s) alloy increases from 96.5 to 265.3 mA·h/g, and its capacity retaining rate (S20) at the 20th cycle increases from 31.3% to 70.2%. Furthermore, the high rate dischargeability (HRD), electrochemical impedance spectrum and potential-step measurements all indicate that the electrochemical kinetics of the alloy electrodes first increases then decreases with raising the amount of Mn substitution.展开更多
The La-Mg-Ni-based A2B7-type La0.8-xNdxMg0.2Ni3.15Co0.2Al0.15 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were prepared by casting and annealing. The influences of partial substitution of Nd for La on the structure a...The La-Mg-Ni-based A2B7-type La0.8-xNdxMg0.2Ni3.15Co0.2Al0.15 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were prepared by casting and annealing. The influences of partial substitution of Nd for La on the structure and electrochemical performance of the as-cast and annealed alloys were investigated. It was found that the experimental alloys consist of two major phases, (La, Mg)2Ni7 phase with the hexagonal Ce2Ni7-type structure and LaNi5 phase with the hexagonal CaCu5-type structure, as well as some residual phase LaNi3 and NdNi5. The discharge capacity and high rate discharge ability (HRD) of the as-cast and annealed alloys first increase and then decrease with Nd content growing. The as-cast and annealed alloys (x=0.3) yield the largest discharge capacities of 380.3 and 384.3 mA·h/g, respectively. The electrochemical cycle stability of the as-cast and annealed alloys markedly grows with Nd content rising. As the Nd content increase from 0 to 0.4. The capacity retaining rate (S100) at the 100th charging and discharging cycle increases from 64.98% to 85.17% for the as-cast alloy, and from 76.60% to 96.84% for the as-annealed alloy.展开更多
ZrMn2 alloy was electro-synthesized directly from cathode pellets compacted with powdered mixture of MnO2 and ZrO2 in molten calcium chloride. Sintering temperature, cell voltage and electrolysis time were the dominan...ZrMn2 alloy was electro-synthesized directly from cathode pellets compacted with powdered mixture of MnO2 and ZrO2 in molten calcium chloride. Sintering temperature, cell voltage and electrolysis time were the dominant factors that affected the characteristics of the final product. The results confirmed the formation of pure ZrMn2 alloy through the electro-deoxidation of the mixed oxide pellets at 3.1 V for 12 h in 900 °C CaCl2 melt. The X-ray diffraction(XRD) and cyclic voltammetry analysis suggested that the electro-deoxidation proceeded from the reduction of manganese oxides to Mn, followed by ZrO2 or CaZrO3 reduction on the pre-formed Mn to ZrMn2 alloy. The cyclic voltammetry measurements using powder microelectrode showed that the prepared ZrMn2 alloy has a good electrochemical hydrogen storage property.展开更多
Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickel-metal hyd...Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickel-metal hydride (Ni-MH) batteries in the near future. Alloying in side B is a major way to improve the performance of Ti-based AB2-type alloys. Based on recent studies, the effects of alloying elements in side B upon the performance of Ti-based AB2-type hydrogen storage alloys are systematically reviewed here. These performances are divided into two categories, namely PCI characteristics, including hydrogen storage capacity (HSC), plateau pressure (PP), pressure hysteresis (PH) and pressure plateau sloping (PPS), and electrochemical properties, including discharge capacity (DC), activation property (AP), cycling stability (CS) and high-rate dischargeability (HRD). Furthermore, the existing problems in these investigations and some suggestions for future research are proposed.展开更多
The effect of the hot-charging treatment on the performance of AB(2) and AB(5) hydrogen storage alloy electrodes was investigated. The result showed that the treatment can markedly improve the voltage plateau ratio (V...The effect of the hot-charging treatment on the performance of AB(2) and AB(5) hydrogen storage alloy electrodes was investigated. The result showed that the treatment can markedly improve the voltage plateau ratio (VPR), the high rate discharge ability (HRDA), the diffusion coefficient of hydrogen DH and the discharge capacity of the AB2 hydrogen storage alloy electrode. The SEM analysis showed that the hot-charging treatment brings about a Ni-rich surface due to the dissolution of Zr oxides. It is also very helpful for the improvement of the kinetic properties of AB2 hydrogen storage alloy electrode because the microcracking of the surface results in fresh surface. This can be the basic modification treatment for NiMH battery used in electric vehicles (EVs) in the future. But for AB(5) type alloys, the treatment has the disadvantage of impairing the comprehensive electrochemical properties, because the surface of the alloy may be corroded during the treatment. The mechanism of the surface modification of the electrode is also proposed.展开更多
The Mg2Ni-type alloys with nominal compositions of Mg20Ni10-xCox(x=0,1,2,3,4,%,mass fraction) were prepared by melt-spinning technology.The structures of the alloys were studied by XRD,SEM and HRTEM.The hydrogen absor...The Mg2Ni-type alloys with nominal compositions of Mg20Ni10-xCox(x=0,1,2,3,4,%,mass fraction) were prepared by melt-spinning technology.The structures of the alloys were studied by XRD,SEM and HRTEM.The hydrogen absorption/desorption kinetics and the electrochemical performances of the alloys were measured.The results show that no amorphous phase forms in the as-spun Co-free alloy,but the as-spun alloys containing Co show a certain amount of amorphous phase.The hydrogen absorption capacities of the as-cast alloys first increase and then decrease with the incremental change of Co content.The hydrogen desorption capacities of as-cast and spun alloys rise with increasing Co content.The melt spinning significantly improves the hydrogenation and dehydrogenation capacities and kinetics of the alloys.The substitution of Co for Ni clearly enhances the discharge capacities of the alloys and the cycle stability of the as-spun alloys.展开更多
In order to improve the electrochemical hydrogen storage performance of the Mg2Ni-type electrode alloys, Mg in the alloy was partially substituted by La, and the nanocrystalline and amorphous Mg2Ni-type Mg20-xLaxNi10 ...In order to improve the electrochemical hydrogen storage performance of the Mg2Ni-type electrode alloys, Mg in the alloy was partially substituted by La, and the nanocrystalline and amorphous Mg2Ni-type Mg20-xLaxNi10 (x-=0, 2) alloys were synthesized by melt-spinning technique. The microstructures of the as-spun alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical hydrogen storage properties of the experimental alloys were tested. The results show that no amorphous phase is detected in the as-spun Mg20Ni10 alloy, but the as-spun Mg18La2Ni10 alloy holds a major amorphous phase. As La content increases from 0 to 2, the maximum discharge capacity of the as-spun (20 m/s) alloys rises from 96.5 to 387.1 mA.h/g, and the capacity retaining rate (S20) at the 20th cycle grows from 31.3% to 71.7%. Melt-spinning engenders an impactful effect on the electrochemical hydrogen storage performances of the alloys. With the increase in the spinning rate from 0 to 30 m/s, the maximum discharge capacity increases from 30.3 to 135.5 mA.h/g for the Mg20Ni10 alloy, and from 197.2 to 406.5 mA-h/g for the Mg18La2Ni10 alloy. The capacity retaining rate (S20) of the Mg2oNi10 alloy at the 20th cycle slightly falls from 36.7% to 27.1%, but it markedly mounts up from 37.3% to 78.3% for the Mg18La2Ni10 alloy.展开更多
The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were synthesized by melt quenching technology. The structures of the as-cast and quenched alloys were characterized by XRD,...The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were synthesized by melt quenching technology. The structures of the as-cast and quenched alloys were characterized by XRD, SEM and HRTEM. The gaseous hydrogen storage kinetics of the alloys was measured using an automatically controlled Sieverts apparatus. The alloy electrodes were charged and discharged with a constant current density in order to investigate the electrochemical hydrogen storage kinetics of the alloys. The results demonstrate that the substitution of Co for Ni results in the formation of secondary phases MgCo2 and Mg instead of altering the major phase Mg2Ni. No amorphous phase is detected in the as-quenched Co- ffee alloy, however, a certain amount of amorphous phase is clearly found in the as-quenched alloys substituted by Co. Furthermore, both the rapid quenching and the Co substitution significantly improve the gaseous and electrochemical hydrogen storage kinetics of the alloys, for which the notable increase of the hydrogen diffusion coefficient (D) along with the limiting current density (IL) and the obvious decline of the electrochemical impedance generated by both the Co substitution and the rapid quenching are basically responsible.展开更多
In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4...In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4)alloys prepared by melt spinning has been carried out.The analysis of XRD and TEM reveals that the as-spun(M=None,Cu)alloys display an entire nanocrystalline structure,whereas the as-spun(M=Co,Mn)alloys hold a mixed structure of nanocrystalline and amorphous structure when M content x=4,indicating that the substitution of M(M=Co,Mn)for Ni facilitates the glass formation in the Mg2Ni-type alloy.Besides,all the as-spun alloys have a major phase of Mg2Ni but M(M=Co,Mn)substitution brings on the formation of some secondary phases,MgCo2 and Mg phases for M=Co as well as MnNi and Mg phases for M=Mn.Based upon the measurements of the automatic Sieverts apparatus and the automatic galvanostatic system,the impacts engendered by M(M=Cu,Co,Mn)substitution on the gaseous and electrochemical hydrogen storage kinetics of the alloys appear to be evident.The gaseous hydriding kinetics of the alloys first rises and then declines with the growing of M(M=Cu,Co,Mn)content.Particularly,the M(M= Mn)substitution results in a sharp drop in the hydriding kinetics when x=4.The M(M=Cu,Co,Mn)substitution ameliorates the dehydriding kinetics dramatically in the order(M=Co)>(M=Mn)>(M=Cu).The electrochemical kinetics of the alloys visibly grows with M content rising for(M=Cu,Co),while it first increases and then declines for(M=Mn).展开更多
Investigation of alloy structure shows that La2-xMgxNi7 (x = 0.3 - 0.8) alloys are mainly com- posed of Ce/Ni7-type, Gd2Co7-type and PuNi3-type phase. The influence of Mg content in alloys on the phase structure is ...Investigation of alloy structure shows that La2-xMgxNi7 (x = 0.3 - 0.8) alloys are mainly com- posed of Ce/Ni7-type, Gd2Co7-type and PuNi3-type phase. The influence of Mg content in alloys on the phase structure is great, resulting in a linear decrease of the unit cell parameters of main phases and increase of hydrogen absorption/desorption plateau as Mg content increases. Electrochemical measurements show that as the Mg content increases, the discharge capacity of alloy electrodes first increases and then decreases. The cyclic stability presents a deteriorative trend. La1.4Mg0.6 Ni7 alloy electrode exhibits the maximum electrochemical discharge capacity (378 mAh·g^-1), and the La1.6Mg0.4Ni7 alloy electrode shows the best cyclic stability (S270 = 81%).展开更多
Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hy...Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel.展开更多
Nanocrystalline Mg2Ni-type alloys with nominal compositions of Mg20Ni10–xCux(x=0,1,2,3,4,mass fraction,%) were synthesized by rapid quenching technique.The microstructures of the as-cast and quenched alloys were char...Nanocrystalline Mg2Ni-type alloys with nominal compositions of Mg20Ni10–xCux(x=0,1,2,3,4,mass fraction,%) were synthesized by rapid quenching technique.The microstructures of the as-cast and quenched alloys were characterized by XRD,SEM and HRTEM.The electrochemical hydrogen storage performances were tested by an automatic galvanostatic system.The hydriding and dehydriding kinetics of the alloys were measured using an automatically controlled Sieverts apparatus.The results show that all the as-quenched alloys hold the typical nanocrystalline structure and the rapid quenching does not change the major phase Mg2Ni.The rapid quenching significantly improves the electrochemical hydrogen storage capacity of the alloys,whereas it slightly impairs the cycling stability of the alloys.Additionally,the hydrogen absorption and desorption capacities of the alloys significantly increase with rising quenching rate.展开更多
The annealing treatment was found to improve the cyclic stability but to degmde discharpe capacity, activation and high-rate discharpeability for the Ti-substituted AB2type alloy electrode. A larper polarization was f...The annealing treatment was found to improve the cyclic stability but to degmde discharpe capacity, activation and high-rate discharpeability for the Ti-substituted AB2type alloy electrode. A larper polarization was found in the annealed alloy because of its poor discharpe kinetics resulted hem the structural homogeneity. At larae discharpe cumnts, the hydmpen dchsion in the bulk of the alloy was mpaofed as the mte-determining step. Based on the P ressure-composition isotherm measurement, we concluded that the decrease in discharpeability of the annealed alloy is owing to the low and flat pressure plateau, as well as the large hysteresis, but the hydrgen stomge density almost remains unchangeable after annealing.展开更多
A series of hydrogen storage Co-free AB3-type alloys were directly synthesized with vacuum mid-frequency melting method,within which Ni of La0.7Mg0.3Ni3 alloy was substituted by Fe,B and(FeB) alloy,respectively.Alloys...A series of hydrogen storage Co-free AB3-type alloys were directly synthesized with vacuum mid-frequency melting method,within which Ni of La0.7Mg0.3Ni3 alloy was substituted by Fe,B and(FeB) alloy,respectively.Alloys were characterized by XRD,EDS and SEM to investigate the effects of B and Fe substitution for Ni on material structure.The content of LaMg2Ni9 phase within La0.7Mg0.3Ni3 alloy reaches 37.9% and that of La0.7Mg0.3Ni2.9(FeB)0.1 alloys reduces to 23.58%.Among all samples,ground particles with different shapes correspond to different phases.The major substitution occurs in LaMg2Ni9 phase.Electrochemical tests indicate that substituted alloys have different electrochemical performance,which is affected by phase structures of alloy.The discharge capacity of La0.7Mg0.3Ni3 alloy reaches 337.3 mA·h/g,but La0.7Mg0.3Ni2.9(FeB)0.1 alloy gets better high rate discharge(HRD) performance at the discharge rate of 500 mA/g with a high HRD value of 73.19%.展开更多
Nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of(Mg_(24)Ni_(10)Cu_2)_(100-x)Nd_x(x=0, 5, 10, 15, 20) were prepared by melt spinning technology and their structures as well as gaseous h...Nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of(Mg_(24)Ni_(10)Cu_2)_(100-x)Nd_x(x=0, 5, 10, 15, 20) were prepared by melt spinning technology and their structures as well as gaseous hydrogen storage characteristics were investigated. The XRD, TEM and SEM linked with EDS detections reveal that the as-spun Nd-free alloy holds an entire nanocrystalline structure but a nanocrystalline and amorphous structure for the as-spun Nd-added alloy, implying that the addition of Nd facilitates the glass forming in the Mg_2Ni-type alloy. Furthermore, the degree of amorphization of the as-spun Nd-added alloy and thermal stability of the amorphous structure clearly increase with the spinning rate rising. The melt spinning ameliorates the hydriding and dehydriding kinetics of the alloys dramatically. Specially, the rising of the spinning rate from 0(the as-cast was defined as the spinning rate of 0 m/s) to 40 m/s brings on the hydrogen absorption saturation ratio(R_5~a)(a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increasing from 36.9% to 91.5% and the hydrogen desorption ratio(R_(1 0)~d)(a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) rising from 16.4% to 47.7% for the(x=10) alloy, respectively.展开更多
In order to improve the gaseous and electrochemical hydrogen storage kinetics of the M2Nitype alloy, the elements Cu and Nd were added in the alloy. The nanocrystalline and amorphous Mg2Ni-type alloys with the composi...In order to improve the gaseous and electrochemical hydrogen storage kinetics of the M2Nitype alloy, the elements Cu and Nd were added in the alloy. The nanocrystalline and amorphous Mg2Ni-type alloys with the composition of(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15, 20) were prepared by melt spinning technology. The effects of Nd content on the structures and hydrogen storage kinetics of the alloys were investigated. The characterization by X-ray diffraction(XRD), transmission electron microscopy(TEM) and scanning electron microscopy(SEM) reveals that all the as-cast alloys hold multiphase structures, containing Mg2Ni-type major phase as well as some secondary phases Mg6Ni, Nd5Mg41, and Nd Ni, whose amounts clearly grow with increasing Nd content. Furthermore, the as-spun Nd-free alloy displays an entire nanocrystalline structure, whereas the as-spun Nd-added alloys hold a mixed structure of nanocrystalline and amorphous structure and the amorphization degree of the alloys visibly increases with the rising of the Nd content, suggesting that the addition of Nd facilitates the glass forming in the Mg2Ni-type alloy. The measurement of the hydrogen storage kinetics indicates that the addition of Nd significantly improves the gaseous and electrochemical hydrogen storage kinetics of the alloys. The addition of Nd enhances the diffusion ability of hydrogen atoms in the alloy, but it impairs the charge-transfer reaction on the surface of the alloy electrode, which makes the high rate discharge ability(HRD) of the alloy electrode fi rst mount up and then go down with the growing of Nd content.展开更多
A partial substitution of Ni by Cu has been carried out in order to improve the hydrogen storage characteristics of the Mg2Ni-type alloys. The nanocrystalline Mg20Ni10-xCux (x = 0, 1, 2, 3, 4) alloys are synthesized b...A partial substitution of Ni by Cu has been carried out in order to improve the hydrogen storage characteristics of the Mg2Ni-type alloys. The nanocrystalline Mg20Ni10-xCux (x = 0, 1, 2, 3, 4) alloys are synthesized by the melt-spinning technique. The structures of the as-cast and spun alloys have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM). The electrochemical performances were evaluated by an automatic galvanostatic system. The hydrogen absorption and desorption kinetics of the alloys were determined by using an automatically controlled Sieverts apparatus. The results indicate that the substitution of Cu for Ni does not alter the major phase Mg2Ni. The Cu substitution significantly ameliorates the electrochemical hydrogen storage performances of alloys, involving both the discharge capacity and the cycle stability. The hydrogen absorption capacity of alloys has been observed to be first increase and then decrease with an increase in the Cu contents. However, the hydrogen desorption capacity of the alloys exhibit a monotonous growth with an increase in the Cu contents.展开更多
基金financed by the National Key Research and Development Program of China[grants number 2022YFB3803800]the National Natural Science Foundation of China[grants number 52071141,52271212,52201250,51771056]Interdisciplinary Innovation Program of North China Electric Power University[grants number XM2112355].
文摘At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages of low hydrogen storage capacity and poor kinetics of hydrogen storage materials,our primary focus is to achieve smooth hydrogen ab-/desorption over a wide temperature range to meet the requirements of fuel cells and their integrated power generation systems.In this paper,the Ti_(0.9)Zr_(0.1)Mn_(1.45)V_(0.4)Fe_(0.15) hydrogen storage alloy was successfully prepared by arc melting.The maximum hydrogen storage capacity reaches 1.89 wt% at 318 K.The alloy has the capability to absorb 90% of hydrogen storage capacity within 50 s at 7 MPa and release 90% of hydrogen within 220 s.Comsol Multiphysics 6.0 software was used to simulate the hydrogen ab-/desorption processes of the tank.The flow rate of cooling water during hydrogen absorption varied in a gradient of(0.02 t x)m s^(-1)(x=0,0.02,0.04,0.06,0.08,0.1,0.12).Cooling water flow rate is positively correlated with the hydrogen absorption rate but negatively correlated with the cost.When the cooling rate is 0.06 m s^(-1),both simulation and experimentation have shown that the hydrogen storage tank is capable of steady hydrogen desorption for over 6 h at a flow rate of 2 L min^(-1).Based on the above conclusions,we have successfully developed a hydrogen-assisted two-wheeler with a range of 80 km and achieved regional demonstration operations in Changzhou and Shaoguan.This paper highlights the achievements of our team in the technological development of fuel cell power generation systems using solid hydrogen storage materials as hydrogen storage carriers and their application in twowheelers in recent years.
基金the financial support provided by the Natural Science Foundations in Hebei Province(No.E2018201235)Baoding Science and Technology Planning Project(No.2074P019)+2 种基金Higher Education in Hebei Province School Science and Technology Research Project(No.QN2019209)Horizontal project(horizontal 20230048)2022 Hebei Province and Hebei University College Students Innovation and Entrepreneurship Training Program(Nos.2022265 and 2022266)。
文摘The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehydrogenation dynamics of alloys were compared.The results show that the as-milled composites contain a large number of amorphous embedded by a small amount of nanocrystals,and there are many point defects.After ball milling,the crystal grain size in the composites containing CoS is relatively larger,followed by CoS_(2)and MoS_(2)again.After hydrogenation,the amorphous phase is crystallized to form Mg_(2)NiH_(4),YH_(3),Pr_(8)H_(18.96),Sm_(3)H_7,Mg,Co or Mo phases,however,Mg_(2)Ni,YH_(2),PrH_(2)and Ni_(3)Y phases appeared after dehydrogenation.The maximum hydrogenation capacity of the composites containing CoS,CoS_(2)and MoS_(2)are 3.939,4.265 and 4.507 wt.%,respectively.The hydrogenation saturation ratio of composite containing MoS_(2)is higher than that of the composites containing CoS and CoS_(2).The dehydrogenation activation energy of the composites containing CoS,CoS_(2)and MoS_(2)is 107.76,68.43 and 63.28 kJ.mol^(-1).H_(2).On the improvement of hydrogen storage performance of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)alloy,the catalytic effect of MoS_(2)sulfide is better than that of CoS_(2)sulfide,and which is better than CoS sulfide.
基金Projects(50871050,50961009)supported by the National Natural Science Foundation of ChinaProjects(2010ZD05,2011ZD10)supported by Natural Science Foundation of Inner Mongolia,ChinaProject(NJzy08071)supported by High Education Science Research Project of Inner Mongolia,China
文摘In order to improve the hydrogen storage kinetics of the Mg2Ni-type alloys, Ni in the alloy was partially substituted with element Co. The Mg2Ni-type Mg2Ni1-xCox (x=0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt-spinning technique. The structures of the as-spun alloys were characterized by XRD and TEM. The gaseous and electrochemical hydrogen storage kinetics of the alloys was measured. The results show that the substitution of Co for Ni notably enhances the glass forming ability of the Mg2Ni-type alloy. The amorphization degree of the alloys visibly increases with rising of Co content. Furthermore, the substitution of Co for Ni significantly improves the hydrogen storage kinetics of the alloys. With an increase in the amount of Co substitution from 0 to 0.4, the hydrogen absorption saturation ratio of the as-spun (15 m/s) alloy increases from 81.2% to 84.9%, the hydrogen desorption ratio from 17.60% to 64.79%, the hydrogen diffusion coefficient increases from 1.07×10-11 to 2.79×10-11 cm2/s and the limiting current density increases from 46.7 to 191.7 mA/g, respectively.
基金Project (2007AA03Z227) supported by the High-tech Research and Development Program of ChinaProjects (50871050, 50701011) supported by the National Natural Science Foundation of China+1 种基金Project (200711020703) supported by Natural Science Foundation of Inner Mongolia, ChinaProject (NJzy08071) supported by Higher Education Science Research Project of Inner Mongolia, China
文摘The nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1-xMnx (x=0, 0.1, 0.2, 0.3, 0.4) were synthesized by melt-spinning technique. The spun alloy ribbons with a continuous length, a thickness of about 30 μm and a width of about 25 mm are obtained. The structures of the as-spun alloy ribbons were characterized by XRD and HRTEM. The electrochemical hydrogen storage characteristics of the as-spun alloy ribbons were measured by an automatic galvanostatic system. The electrochemical impedance spectrums (EIS) were plotted by an electrochemical workstation. The hydrogen diffusion coefficients (D) in the alloys were calculated by virtue of potential-step measurement. The results show that all the as-spun (x=0) alloys hold a typical nanocrystalline structure, whereas the as-spun (x=0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni facilitates the glass formation in the Mg2Ni-type alloy. The substitution of Mn for Ni significantly improves the electrochemical hydrogen storage performances of the alloys, involving the discharge capacity and the electrochemical cycle stability. With an increase in the amount of Mn substitution from 0 to 0.4, the discharge capacity of the as-spun (20 m/s) alloy increases from 96.5 to 265.3 mA·h/g, and its capacity retaining rate (S20) at the 20th cycle increases from 31.3% to 70.2%. Furthermore, the high rate dischargeability (HRD), electrochemical impedance spectrum and potential-step measurements all indicate that the electrochemical kinetics of the alloy electrodes first increases then decreases with raising the amount of Mn substitution.
基金Projects(51161015,50961009)supported by the National Natural Science Foundations of ChinaProject(2011AA03A408)supported by the National Hi-tech Research and Development Program of ChinaProjects(2011ZD10,2010ZD05)supported by the Natural Science Foundation of Inner Mongolia,China
文摘The La-Mg-Ni-based A2B7-type La0.8-xNdxMg0.2Ni3.15Co0.2Al0.15 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were prepared by casting and annealing. The influences of partial substitution of Nd for La on the structure and electrochemical performance of the as-cast and annealed alloys were investigated. It was found that the experimental alloys consist of two major phases, (La, Mg)2Ni7 phase with the hexagonal Ce2Ni7-type structure and LaNi5 phase with the hexagonal CaCu5-type structure, as well as some residual phase LaNi3 and NdNi5. The discharge capacity and high rate discharge ability (HRD) of the as-cast and annealed alloys first increase and then decrease with Nd content growing. The as-cast and annealed alloys (x=0.3) yield the largest discharge capacities of 380.3 and 384.3 mA·h/g, respectively. The electrochemical cycle stability of the as-cast and annealed alloys markedly grows with Nd content rising. As the Nd content increase from 0 to 0.4. The capacity retaining rate (S100) at the 100th charging and discharging cycle increases from 64.98% to 85.17% for the as-cast alloy, and from 76.60% to 96.84% for the as-annealed alloy.
基金Project(51201058)supported by the National Natural Science Foundation of ChinaProjects(E2010000941,E2014209009)supported by Hebei Provincial Natural Science Foundation of China
文摘ZrMn2 alloy was electro-synthesized directly from cathode pellets compacted with powdered mixture of MnO2 and ZrO2 in molten calcium chloride. Sintering temperature, cell voltage and electrolysis time were the dominant factors that affected the characteristics of the final product. The results confirmed the formation of pure ZrMn2 alloy through the electro-deoxidation of the mixed oxide pellets at 3.1 V for 12 h in 900 °C CaCl2 melt. The X-ray diffraction(XRD) and cyclic voltammetry analysis suggested that the electro-deoxidation proceeded from the reduction of manganese oxides to Mn, followed by ZrO2 or CaZrO3 reduction on the pre-formed Mn to ZrMn2 alloy. The cyclic voltammetry measurements using powder microelectrode showed that the prepared ZrMn2 alloy has a good electrochemical hydrogen storage property.
文摘Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickel-metal hydride (Ni-MH) batteries in the near future. Alloying in side B is a major way to improve the performance of Ti-based AB2-type alloys. Based on recent studies, the effects of alloying elements in side B upon the performance of Ti-based AB2-type hydrogen storage alloys are systematically reviewed here. These performances are divided into two categories, namely PCI characteristics, including hydrogen storage capacity (HSC), plateau pressure (PP), pressure hysteresis (PH) and pressure plateau sloping (PPS), and electrochemical properties, including discharge capacity (DC), activation property (AP), cycling stability (CS) and high-rate dischargeability (HRD). Furthermore, the existing problems in these investigations and some suggestions for future research are proposed.
文摘The effect of the hot-charging treatment on the performance of AB(2) and AB(5) hydrogen storage alloy electrodes was investigated. The result showed that the treatment can markedly improve the voltage plateau ratio (VPR), the high rate discharge ability (HRDA), the diffusion coefficient of hydrogen DH and the discharge capacity of the AB2 hydrogen storage alloy electrode. The SEM analysis showed that the hot-charging treatment brings about a Ni-rich surface due to the dissolution of Zr oxides. It is also very helpful for the improvement of the kinetic properties of AB2 hydrogen storage alloy electrode because the microcracking of the surface results in fresh surface. This can be the basic modification treatment for NiMH battery used in electric vehicles (EVs) in the future. But for AB(5) type alloys, the treatment has the disadvantage of impairing the comprehensive electrochemical properties, because the surface of the alloy may be corroded during the treatment. The mechanism of the surface modification of the electrode is also proposed.
基金Project(2006AA05Z132) supported by the National High-tech Research and Development Program of ChinaProjects(50871050,50701011) supported by the National Natural Science Foundation of China+1 种基金Project(200711020703) supported by Natural Science Foundation of Inner Mongolia,ChinaProject(NJzy08071) supported by High Education Science Research Program of Inner Mongolia,China
文摘The Mg2Ni-type alloys with nominal compositions of Mg20Ni10-xCox(x=0,1,2,3,4,%,mass fraction) were prepared by melt-spinning technology.The structures of the alloys were studied by XRD,SEM and HRTEM.The hydrogen absorption/desorption kinetics and the electrochemical performances of the alloys were measured.The results show that no amorphous phase forms in the as-spun Co-free alloy,but the as-spun alloys containing Co show a certain amount of amorphous phase.The hydrogen absorption capacities of the as-cast alloys first increase and then decrease with the incremental change of Co content.The hydrogen desorption capacities of as-cast and spun alloys rise with increasing Co content.The melt spinning significantly improves the hydrogenation and dehydrogenation capacities and kinetics of the alloys.The substitution of Co for Ni clearly enhances the discharge capacities of the alloys and the cycle stability of the as-spun alloys.
基金Projects(50871050, 50961009) supported by the National Natural Science Foundation of ChinaProject(2010ZD05) supported by the Natural Science Foundation of Inner Mongolia, ChinaProject(NJzy08071) supported by the Higher Education Science Research Project of Inner Mongolia, China
文摘In order to improve the electrochemical hydrogen storage performance of the Mg2Ni-type electrode alloys, Mg in the alloy was partially substituted by La, and the nanocrystalline and amorphous Mg2Ni-type Mg20-xLaxNi10 (x-=0, 2) alloys were synthesized by melt-spinning technique. The microstructures of the as-spun alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical hydrogen storage properties of the experimental alloys were tested. The results show that no amorphous phase is detected in the as-spun Mg20Ni10 alloy, but the as-spun Mg18La2Ni10 alloy holds a major amorphous phase. As La content increases from 0 to 2, the maximum discharge capacity of the as-spun (20 m/s) alloys rises from 96.5 to 387.1 mA.h/g, and the capacity retaining rate (S20) at the 20th cycle grows from 31.3% to 71.7%. Melt-spinning engenders an impactful effect on the electrochemical hydrogen storage performances of the alloys. With the increase in the spinning rate from 0 to 30 m/s, the maximum discharge capacity increases from 30.3 to 135.5 mA.h/g for the Mg20Ni10 alloy, and from 197.2 to 406.5 mA-h/g for the Mg18La2Ni10 alloy. The capacity retaining rate (S20) of the Mg2oNi10 alloy at the 20th cycle slightly falls from 36.7% to 27.1%, but it markedly mounts up from 37.3% to 78.3% for the Mg18La2Ni10 alloy.
基金Funded by National Natural Science Foundations of China(Nos.51161015 and 50961009)Natural Science Foundation of Inner Mongolia,China(Nos.2011ZD10 and 2010ZD05)Higher Education Science Research Project of Inner Mongolia,China(No.NJzy08071)
文摘The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were synthesized by melt quenching technology. The structures of the as-cast and quenched alloys were characterized by XRD, SEM and HRTEM. The gaseous hydrogen storage kinetics of the alloys was measured using an automatically controlled Sieverts apparatus. The alloy electrodes were charged and discharged with a constant current density in order to investigate the electrochemical hydrogen storage kinetics of the alloys. The results demonstrate that the substitution of Co for Ni results in the formation of secondary phases MgCo2 and Mg instead of altering the major phase Mg2Ni. No amorphous phase is detected in the as-quenched Co- ffee alloy, however, a certain amount of amorphous phase is clearly found in the as-quenched alloys substituted by Co. Furthermore, both the rapid quenching and the Co substitution significantly improve the gaseous and electrochemical hydrogen storage kinetics of the alloys, for which the notable increase of the hydrogen diffusion coefficient (D) along with the limiting current density (IL) and the obvious decline of the electrochemical impedance generated by both the Co substitution and the rapid quenching are basically responsible.
基金Projects(51161015,51371094)supported by National Natural Science Foundations of ChinaProject(2011ZD10)supported by Natural Science Foundation of Inner Mongolia,China
文摘In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4)alloys prepared by melt spinning has been carried out.The analysis of XRD and TEM reveals that the as-spun(M=None,Cu)alloys display an entire nanocrystalline structure,whereas the as-spun(M=Co,Mn)alloys hold a mixed structure of nanocrystalline and amorphous structure when M content x=4,indicating that the substitution of M(M=Co,Mn)for Ni facilitates the glass formation in the Mg2Ni-type alloy.Besides,all the as-spun alloys have a major phase of Mg2Ni but M(M=Co,Mn)substitution brings on the formation of some secondary phases,MgCo2 and Mg phases for M=Co as well as MnNi and Mg phases for M=Mn.Based upon the measurements of the automatic Sieverts apparatus and the automatic galvanostatic system,the impacts engendered by M(M=Cu,Co,Mn)substitution on the gaseous and electrochemical hydrogen storage kinetics of the alloys appear to be evident.The gaseous hydriding kinetics of the alloys first rises and then declines with the growing of M(M=Cu,Co,Mn)content.Particularly,the M(M= Mn)substitution results in a sharp drop in the hydriding kinetics when x=4.The M(M=Cu,Co,Mn)substitution ameliorates the dehydriding kinetics dramatically in the order(M=Co)>(M=Mn)>(M=Cu).The electrochemical kinetics of the alloys visibly grows with M content rising for(M=Cu,Co),while it first increases and then declines for(M=Mn).
文摘Investigation of alloy structure shows that La2-xMgxNi7 (x = 0.3 - 0.8) alloys are mainly com- posed of Ce/Ni7-type, Gd2Co7-type and PuNi3-type phase. The influence of Mg content in alloys on the phase structure is great, resulting in a linear decrease of the unit cell parameters of main phases and increase of hydrogen absorption/desorption plateau as Mg content increases. Electrochemical measurements show that as the Mg content increases, the discharge capacity of alloy electrodes first increases and then decreases. The cyclic stability presents a deteriorative trend. La1.4Mg0.6 Ni7 alloy electrode exhibits the maximum electrochemical discharge capacity (378 mAh·g^-1), and the La1.6Mg0.4Ni7 alloy electrode shows the best cyclic stability (S270 = 81%).
文摘Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel.
基金Project(2007AA03Z227) supported by High-tech Research and Development Program of ChinaProjects(50871050,50701011) supported by the National Natural Science Foundation of China+1 种基金Project(200711020703) supported by the Natural Science Foundation of Inner Mongolia,ChinaProject(NJzy08071) supported by High Education Science Research Project of Inner Mongolia,China
文摘Nanocrystalline Mg2Ni-type alloys with nominal compositions of Mg20Ni10–xCux(x=0,1,2,3,4,mass fraction,%) were synthesized by rapid quenching technique.The microstructures of the as-cast and quenched alloys were characterized by XRD,SEM and HRTEM.The electrochemical hydrogen storage performances were tested by an automatic galvanostatic system.The hydriding and dehydriding kinetics of the alloys were measured using an automatically controlled Sieverts apparatus.The results show that all the as-quenched alloys hold the typical nanocrystalline structure and the rapid quenching does not change the major phase Mg2Ni.The rapid quenching significantly improves the electrochemical hydrogen storage capacity of the alloys,whereas it slightly impairs the cycling stability of the alloys.Additionally,the hydrogen absorption and desorption capacities of the alloys significantly increase with rising quenching rate.
文摘The annealing treatment was found to improve the cyclic stability but to degmde discharpe capacity, activation and high-rate discharpeability for the Ti-substituted AB2type alloy electrode. A larper polarization was found in the annealed alloy because of its poor discharpe kinetics resulted hem the structural homogeneity. At larae discharpe cumnts, the hydmpen dchsion in the bulk of the alloy was mpaofed as the mte-determining step. Based on the P ressure-composition isotherm measurement, we concluded that the decrease in discharpeability of the annealed alloy is owing to the low and flat pressure plateau, as well as the large hysteresis, but the hydrgen stomge density almost remains unchangeable after annealing.
基金Project(2007AA11A104) supported by the High-tech Research and Development Program of ChinaProject(2009CB220100) supported by the National Basic Research Program of China
文摘A series of hydrogen storage Co-free AB3-type alloys were directly synthesized with vacuum mid-frequency melting method,within which Ni of La0.7Mg0.3Ni3 alloy was substituted by Fe,B and(FeB) alloy,respectively.Alloys were characterized by XRD,EDS and SEM to investigate the effects of B and Fe substitution for Ni on material structure.The content of LaMg2Ni9 phase within La0.7Mg0.3Ni3 alloy reaches 37.9% and that of La0.7Mg0.3Ni2.9(FeB)0.1 alloys reduces to 23.58%.Among all samples,ground particles with different shapes correspond to different phases.The major substitution occurs in LaMg2Ni9 phase.Electrochemical tests indicate that substituted alloys have different electrochemical performance,which is affected by phase structures of alloy.The discharge capacity of La0.7Mg0.3Ni3 alloy reaches 337.3 mA·h/g,but La0.7Mg0.3Ni2.9(FeB)0.1 alloy gets better high rate discharge(HRD) performance at the discharge rate of 500 mA/g with a high HRD value of 73.19%.
基金Projects(51161015,51371094)supported by the National Natural Science Foundation of China
文摘Nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of(Mg_(24)Ni_(10)Cu_2)_(100-x)Nd_x(x=0, 5, 10, 15, 20) were prepared by melt spinning technology and their structures as well as gaseous hydrogen storage characteristics were investigated. The XRD, TEM and SEM linked with EDS detections reveal that the as-spun Nd-free alloy holds an entire nanocrystalline structure but a nanocrystalline and amorphous structure for the as-spun Nd-added alloy, implying that the addition of Nd facilitates the glass forming in the Mg_2Ni-type alloy. Furthermore, the degree of amorphization of the as-spun Nd-added alloy and thermal stability of the amorphous structure clearly increase with the spinning rate rising. The melt spinning ameliorates the hydriding and dehydriding kinetics of the alloys dramatically. Specially, the rising of the spinning rate from 0(the as-cast was defined as the spinning rate of 0 m/s) to 40 m/s brings on the hydrogen absorption saturation ratio(R_5~a)(a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increasing from 36.9% to 91.5% and the hydrogen desorption ratio(R_(1 0)~d)(a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) rising from 16.4% to 47.7% for the(x=10) alloy, respectively.
基金Funded by the National Natural Science Foundations of China(Nos.51161015 and 51371094)
文摘In order to improve the gaseous and electrochemical hydrogen storage kinetics of the M2Nitype alloy, the elements Cu and Nd were added in the alloy. The nanocrystalline and amorphous Mg2Ni-type alloys with the composition of(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15, 20) were prepared by melt spinning technology. The effects of Nd content on the structures and hydrogen storage kinetics of the alloys were investigated. The characterization by X-ray diffraction(XRD), transmission electron microscopy(TEM) and scanning electron microscopy(SEM) reveals that all the as-cast alloys hold multiphase structures, containing Mg2Ni-type major phase as well as some secondary phases Mg6Ni, Nd5Mg41, and Nd Ni, whose amounts clearly grow with increasing Nd content. Furthermore, the as-spun Nd-free alloy displays an entire nanocrystalline structure, whereas the as-spun Nd-added alloys hold a mixed structure of nanocrystalline and amorphous structure and the amorphization degree of the alloys visibly increases with the rising of the Nd content, suggesting that the addition of Nd facilitates the glass forming in the Mg2Ni-type alloy. The measurement of the hydrogen storage kinetics indicates that the addition of Nd significantly improves the gaseous and electrochemical hydrogen storage kinetics of the alloys. The addition of Nd enhances the diffusion ability of hydrogen atoms in the alloy, but it impairs the charge-transfer reaction on the surface of the alloy electrode, which makes the high rate discharge ability(HRD) of the alloy electrode fi rst mount up and then go down with the growing of Nd content.
文摘A partial substitution of Ni by Cu has been carried out in order to improve the hydrogen storage characteristics of the Mg2Ni-type alloys. The nanocrystalline Mg20Ni10-xCux (x = 0, 1, 2, 3, 4) alloys are synthesized by the melt-spinning technique. The structures of the as-cast and spun alloys have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM). The electrochemical performances were evaluated by an automatic galvanostatic system. The hydrogen absorption and desorption kinetics of the alloys were determined by using an automatically controlled Sieverts apparatus. The results indicate that the substitution of Cu for Ni does not alter the major phase Mg2Ni. The Cu substitution significantly ameliorates the electrochemical hydrogen storage performances of alloys, involving both the discharge capacity and the cycle stability. The hydrogen absorption capacity of alloys has been observed to be first increase and then decrease with an increase in the Cu contents. However, the hydrogen desorption capacity of the alloys exhibit a monotonous growth with an increase in the Cu contents.