ABA is one of the 5 phytohormones in higher plants, which is also the most important hormone that regulates higher plants in response to environmental stress, by ABA signal transduction. Understanding ABA signal trans...ABA is one of the 5 phytohormones in higher plants, which is also the most important hormone that regulates higher plants in response to environmental stress, by ABA signal transduction. Understanding ABA signal transduction at the molecular level is crucial to biology and ecology, and rational breeding complied with corresponding eco-environmental changes. Great advancements have taken place over the past 10 years by application of the Arabidopsis experimental system. Many components involved in ABA signal transduction have been isolated and identified and a clear overall picture of gene expression and control for this transduction has become an accepted fact. On the basis of the work in our laboratory, in conjunction with the data available at the moment, the authors have attempted to integrate ABA signal transduction pathways into a common one and give some insights into the relationship between ABA signal transduction and other hormone signal transduction pathways, with an emphasis upon the ABA signal transduction during higher plant seed development. A future challenge in this field is that different experimental systems are applied and various receptors and genes need to be characterized through the utilization of microarray chips.展开更多
基金the National Key Basic Research Development Program (Grant No. 2000018605 and 1999011708) the Major Research Plan of NSFC (Grant No. 90102012) and the Chinese National Outstanding Youth Fund (Grant No. 40025106)
文摘ABA is one of the 5 phytohormones in higher plants, which is also the most important hormone that regulates higher plants in response to environmental stress, by ABA signal transduction. Understanding ABA signal transduction at the molecular level is crucial to biology and ecology, and rational breeding complied with corresponding eco-environmental changes. Great advancements have taken place over the past 10 years by application of the Arabidopsis experimental system. Many components involved in ABA signal transduction have been isolated and identified and a clear overall picture of gene expression and control for this transduction has become an accepted fact. On the basis of the work in our laboratory, in conjunction with the data available at the moment, the authors have attempted to integrate ABA signal transduction pathways into a common one and give some insights into the relationship between ABA signal transduction and other hormone signal transduction pathways, with an emphasis upon the ABA signal transduction during higher plant seed development. A future challenge in this field is that different experimental systems are applied and various receptors and genes need to be characterized through the utilization of microarray chips.