期刊文献+
共找到351篇文章
< 1 2 18 >
每页显示 20 50 100
A Survey of Accelerator Architectures for Deep Neural Networks 被引量:8
1
作者 Yiran Chen Yuan Xie +2 位作者 Linghao Song Fan Chen Tianqi Tang 《Engineering》 SCIE EI 2020年第3期264-274,共11页
Recently,due to the availability of big data and the rapid growth of computing power,artificial intelligence(AI)has regained tremendous attention and investment.Machine learning(ML)approaches have been successfully ap... Recently,due to the availability of big data and the rapid growth of computing power,artificial intelligence(AI)has regained tremendous attention and investment.Machine learning(ML)approaches have been successfully applied to solve many problems in academia and in industry.Although the explosion of big data applications is driving the development of ML,it also imposes severe challenges of data processing speed and scalability on conventional computer systems.Computing platforms that are dedicatedly designed for AI applications have been considered,ranging from a complement to von Neumann platforms to a“must-have”and stand-alone technical solution.These platforms,which belong to a larger category named“domain-specific computing,”focus on specific customization for AI.In this article,we focus on summarizing the recent advances in accelerator designs for deep neural networks(DNNs)-that is,DNN accelerators.We discuss various architectures that support DNN executions in terms of computing units,dataflow optimization,targeted network topologies,architectures on emerging technologies,and accelerators for emerging applications.We also provide our visions on the future trend of AI chip designs. 展开更多
关键词 Deep neural network Domain-specific architecture ACCELERATOR
下载PDF
Effective distributed convolutional neural network architecture for remote sensing images target classification with a pre-training approach 被引量:3
2
作者 LI Binquan HU Xiaohui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期238-244,共7页
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif... How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks. 展开更多
关键词 convolutional neural network (CNN) DISTRIBUTED architecture REMOTE SENSING images (RSIs) TARGET classification pre-training
下载PDF
An Optimized Convolution Neural Network Architecture for Paddy Disease Classification 被引量:2
3
作者 Muhammad Asif Saleem Muhammad Aamir +2 位作者 Rosziati Ibrahim Norhalina Senan Tahir Alyas 《Computers, Materials & Continua》 SCIE EI 2022年第6期6053-6067,共15页
Plant disease classification based on digital pictures is challenging.Machine learning approaches and plant image categorization technologies such as deep learning have been utilized to recognize,identify,and diagnose... Plant disease classification based on digital pictures is challenging.Machine learning approaches and plant image categorization technologies such as deep learning have been utilized to recognize,identify,and diagnose plant diseases in the previous decade.Increasing the yield quantity and quality of rice forming is an important cause for the paddy production countries.However,some diseases that are blocking the improvement in paddy production are considered as an ominous threat.Convolution Neural Network(CNN)has shown a remarkable performance in solving the early detection of paddy leaf diseases based on its images in the fast-growing era of science and technology.Nevertheless,the significant CNN architectures construction is dependent on expertise in a neural network and domain knowledge.This approach is time-consuming,and high computational resources are mandatory.In this research,we propose a novel method based on Mutant Particle swarm optimization(MUT-PSO)Algorithms to search for an optimum CNN architecture for Paddy leaf disease classification.Experimentation results show that Mutant Particle swarm optimization Convolution Neural Network(MUTPSO-CNN)can find optimumCNNarchitecture that offers better performance than existing hand-crafted CNN architectures in terms of accuracy,precision/recall,and execution time. 展开更多
关键词 Deep learning optimum CNN architecture particle swarm optimization convolutional neural network parameter optimization
下载PDF
Scale adaptive fitness evaluation‐based particle swarm optimisation for hyperparameter and architecture optimisation in neural networks and deep learning 被引量:2
4
作者 Ye‐Qun Wang Jian‐Yu Li +2 位作者 Chun‐Hua Chen Jun Zhang Zhi‐Hui Zhan 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期849-862,共14页
Research into automatically searching for an optimal neural network(NN)by optimi-sation algorithms is a significant research topic in deep learning and artificial intelligence.However,this is still challenging due to ... Research into automatically searching for an optimal neural network(NN)by optimi-sation algorithms is a significant research topic in deep learning and artificial intelligence.However,this is still challenging due to two issues:Both the hyperparameter and ar-chitecture should be optimised and the optimisation process is computationally expen-sive.To tackle these two issues,this paper focusses on solving the hyperparameter and architecture optimization problem for the NN and proposes a novel light‐weight scale‐adaptive fitness evaluation‐based particle swarm optimisation(SAFE‐PSO)approach.Firstly,the SAFE‐PSO algorithm considers the hyperparameters and architectures together in the optimisation problem and therefore can find their optimal combination for the globally best NN.Secondly,the computational cost can be reduced by using multi‐scale accuracy evaluation methods to evaluate candidates.Thirdly,a stagnation‐based switch strategy is proposed to adaptively switch different evaluation methods to better balance the search performance and computational cost.The SAFE‐PSO algorithm is tested on two widely used datasets:The 10‐category(i.e.,CIFAR10)and the 100−cate-gory(i.e.,CIFAR100).The experimental results show that SAFE‐PSO is very effective and efficient,which can not only find a promising NN automatically but also find a better NN than compared algorithms at the same computational cost. 展开更多
关键词 deep learning evolutionary computation hyperparameter and architecture optimisation neural networks particle swarm optimisation scale‐adaptive fitness evaluation
下载PDF
APPLICATION OF ARCHITECTURE- BASED NEURAL NETWORKS IN MODELING AND PARAMETER OPTIMIZATION OF HYDRAULIC BUMPER 被引量:1
5
作者 Yang Haiwei Zhan Yongqi Qiao Junwei Shi GuanglinSchool of Mechanical Engineering,Shanghai Jiaotong University,Shanghai 200030, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第3期313-316,共4页
The dynamic working process of 52SFZ-140-207B type of hydraulic bumper isanalyzed. The modeling method using architecture-based neural networks is introduced. Using thismodeling method, the dynamic model of the hydrau... The dynamic working process of 52SFZ-140-207B type of hydraulic bumper isanalyzed. The modeling method using architecture-based neural networks is introduced. Using thismodeling method, the dynamic model of the hydraulic bumper is established; Based on this model thestructural parameters of the hydraulic bumper are optimized with Genetic algorithm. The result showsthat the performance of the dynamic model is close to that of the hydraulic bumper, and the dynamicperformance of the hydraulic bumper is improved through parameter optimization. 展开更多
关键词 architecture-based neural networks MODELING Parameter optimization Hydraulic bumper
下载PDF
Side channel attacks for architecture extraction of neural networks
6
作者 HervéChabanne Jean-Luc Danger +1 位作者 Linda Guiga Ulrich Kühne 《CAAI Transactions on Intelligence Technology》 EI 2021年第1期3-16,共14页
Side channel attacks(SCAs)on neural networks(NNs)are particularly efficient for retrieving secret information from NNs.We differentiate multiple types of threat scenarios regarding what kind of information is availabl... Side channel attacks(SCAs)on neural networks(NNs)are particularly efficient for retrieving secret information from NNs.We differentiate multiple types of threat scenarios regarding what kind of information is available before the attack and its purpose:recovering hyperparameters(the architecture)of the targeted NN,its weights(parameters),or its inputs.In this survey article,we consider the most relevant attacks to extract the architecture of CNNs.We also categorize SCAs,depending on access with respect to the victim:physical,local,or remote.Attacks targeting the architecture via local SCAs are most common.As of today,physical access seems necessary to retrieve the weights of an NN.We notably describe cache attacks,which are local SCAs aiming to extract the NN's underlying architecture.Few countermeasures have emerged;these are presented at the end of the survey. 展开更多
关键词 architecture networkS neural
下载PDF
Deep Neural Network Architecture Search via Decomposition-Based Multi-Objective Stochastic Fractal Search
7
作者 Hongshang Xu Bei Dong +1 位作者 Xiaochang Liu Xiaojun Wu 《Intelligent Automation & Soft Computing》 2023年第11期185-202,共18页
Deep neural networks often outperform classical machine learning algorithms in solving real-world problems.However,designing better networks usually requires domain expertise and consumes significant time and com-puti... Deep neural networks often outperform classical machine learning algorithms in solving real-world problems.However,designing better networks usually requires domain expertise and consumes significant time and com-puting resources.Moreover,when the task changes,the original network architecture becomes outdated and requires redesigning.Thus,Neural Architecture Search(NAS)has gained attention as an effective approach to automatically generate optimal network architectures.Most NAS methods mainly focus on achieving high performance while ignoring architectural complexity.A myriad of research has revealed that network performance and structural complexity are often positively correlated.Nevertheless,complex network structures will bring enormous computing resources.To cope with this,we formulate the neural architecture search task as a multi-objective optimization problem,where an optimal architecture is learned by minimizing the classification error rate and the number of network parameters simultaneously.And then a decomposition-based multi-objective stochastic fractal search method is proposed to solve it.In view of the discrete property of the NAS problem,we discretize the stochastic fractal search step size so that the network architecture can be optimized more effectively.Additionally,two distinct update methods are employed in step size update stage to enhance the global and local search abilities adaptively.Furthermore,an information exchange mechanism between architectures is raised to accelerate the convergence process and improve the efficiency of the algorithm.Experimental studies show that the proposed algorithm has competitive performance comparable to many existing manual and automatic deep neural network generation approaches,which achieved a parameter-less and high-precision architecture with low-cost on each of the six benchmark datasets. 展开更多
关键词 Deep neural network neural architecture search multi-objective optimization stochastic fractal search DECOMPOSITION
下载PDF
A Multithreaded CGRA for Convolutional Neural Network Processing 被引量:1
8
作者 Kota Ando Shinya Takamaeda-Yamazaki +2 位作者 Masayuki Ikebe Tetsuya Asai Masato Motomura 《Circuits and Systems》 2017年第6期149-170,共22页
Convolutional neural network (CNN) is an essential model to achieve high accuracy in various machine learning applications, such as image recognition and natural language processing. One of the important issues for CN... Convolutional neural network (CNN) is an essential model to achieve high accuracy in various machine learning applications, such as image recognition and natural language processing. One of the important issues for CNN acceleration with high energy efficiency and processing performance is efficient data reuse by exploiting the inherent data locality. In this paper, we propose a novel CGRA (Coarse Grained Reconfigurable Array) architecture with time-domain multithreading for exploiting input data locality. The multithreading on each processing element enables the input data reusing through multiple computation periods. This paper presents the accelerator design performance analysis of the proposed architecture. We examine the structure of memory subsystems, as well as the architecture of the computing array, to supply required data with minimal performance overhead. We explore efficient architecture design alternatives based on the characteristics of modern CNN configurations. The evaluation results show that the available bandwidth of the external memory can be utilized efficiently when the output plane is wider (in earlier layers of many CNNs) while the input data locality can be utilized maximally when the number of output channel is larger (in later layers). 展开更多
关键词 CNN Convolutional neural network DEEP LEARNING Multithreaded architecture CGRA
下载PDF
Accelerating hybrid and compact neural networks targeting perception and control domains with coarse-grained dataflow reconfiguration
9
作者 Zheng Wang Libing Zhou +12 位作者 Wenting Xie Weiguang Chen Jinyuan Su Wenxuan Chen Anhua Du Shanliao Li Minglan Liang Yuejin Lin Wei Zhao Yanze Wu Tianfu Sun Wenqi Fang Zhibin Yu 《Journal of Semiconductors》 EI CAS CSCD 2020年第2期29-41,共13页
Driven by continuous scaling of nanoscale semiconductor technologies,the past years have witnessed the progressive advancement of machine learning techniques and applications.Recently,dedicated machine learning accele... Driven by continuous scaling of nanoscale semiconductor technologies,the past years have witnessed the progressive advancement of machine learning techniques and applications.Recently,dedicated machine learning accelerators,especially for neural networks,have attracted the research interests of computer architects and VLSI designers.State-of-the-art accelerators increase performance by deploying a huge amount of processing elements,however still face the issue of degraded resource utilization across hybrid and non-standard algorithmic kernels.In this work,we exploit the properties of important neural network kernels for both perception and control to propose a reconfigurable dataflow processor,which adjusts the patterns of data flowing,functionalities of processing elements and on-chip storages according to network kernels.In contrast to stateof-the-art fine-grained data flowing techniques,the proposed coarse-grained dataflow reconfiguration approach enables extensive sharing of computing and storage resources.Three hybrid networks for MobileNet,deep reinforcement learning and sequence classification are constructed and analyzed with customized instruction sets and toolchain.A test chip has been designed and fabricated under UMC 65 nm CMOS technology,with the measured power consumption of 7.51 mW under 100 MHz frequency on a die size of 1.8×1.8 mm^2. 展开更多
关键词 CMOS technology digital integrated circuits neural networks dataflow architecture
下载PDF
Graphic Processing Unit-Accelerated Neural Network Model for Biological Species Recognition
10
作者 温程璐 潘伟 +1 位作者 陈晓熹 祝青园 《Journal of Donghua University(English Edition)》 EI CAS 2012年第1期5-8,共4页
A graphic processing unit (GPU)-accelerated biological species recognition method using partially connected neural evolutionary network model is introduced in this paper. The partial connected neural evolutionary netw... A graphic processing unit (GPU)-accelerated biological species recognition method using partially connected neural evolutionary network model is introduced in this paper. The partial connected neural evolutionary network adopted in the paper can overcome the disadvantage of traditional neural network with small inputs. The whole image is considered as the input of the neural network, so the maximal features can be kept for recognition. To speed up the recognition process of the neural network, a fast implementation of the partially connected neural network was conducted on NVIDIA Tesla C1060 using the NVIDIA compute unified device architecture (CUDA) framework. Image sets of eight biological species were obtained to test the GPU implementation and counterpart serial CPU implementation, and experiment results showed GPU implementation works effectively on both recognition rate and speed, and gained 343 speedup over its counterpart CPU implementation. Comparing to feature-based recognition method on the same recognition task, the method also achieved an acceptable correct rate of 84.6% when testing on eight biological species. 展开更多
关键词 graphic processing unit(GPU) compute unified device architecture (CUDA) neural network species recognition
下载PDF
A Double-Branch Xception Architecture for Acute Hemorrhage Detection and Subtype Classification
11
作者 Muhammad Naeem Akram Muhammad Usman Yaseen +2 位作者 Muhammad Waqar Muhammad Imran Aftab Hussain 《Computers, Materials & Continua》 SCIE EI 2023年第9期3727-3744,共18页
This study presents a deep learning model for efficient intracranial hemorrhage(ICH)detection and subtype classification on non-contrast head computed tomography(CT)images.ICH refers to bleeding in the skull,leading t... This study presents a deep learning model for efficient intracranial hemorrhage(ICH)detection and subtype classification on non-contrast head computed tomography(CT)images.ICH refers to bleeding in the skull,leading to the most critical life-threatening health condition requiring rapid and accurate diagnosis.It is classified as intra-axial hemorrhage(intraventricular,intraparenchymal)and extra-axial hemorrhage(subdural,epidural,subarachnoid)based on the bleeding location inside the skull.Many computer-aided diagnoses(CAD)-based schemes have been proposed for ICH detection and classification at both slice and scan levels.However,these approaches performonly binary classification and suffer from a large number of parameters,which increase storage costs.Further,the accuracy of brain hemorrhage detection in existing models is significantly low for medically critical applications.To overcome these problems,a fast and efficient system for the automatic detection of ICH is needed.We designed a double-branch model based on xception architecture that extracts spatial and instant features,concatenates them,and creates the 3D spatial context(common feature vectors)fed to a decision tree classifier for final predictions.The data employed for the experimentation was gathered during the 2019 Radiologist Society of North America(RSNA)brain hemorrhage detection challenge.Our model outperformed benchmark models and achieved better accuracy in intraventricular(99.49%),subarachnoid(99.49%),intraparenchymal(99.10%),and subdural(98.09%)categories,thereby justifying the performance of the proposed double-branch xception architecture for ICH detection and classification. 展开更多
关键词 Computed tomography convolutional neural networks intracranial hemorrhage xception architecture
下载PDF
Neural Network-Based Performance Index Model for Enterprise Goals Simulation and Forecasting
12
作者 Joe Essien Martin Ogharandukun 《Journal of Computer and Communications》 2023年第8期1-13,共13页
Enterprise Information System management has become an increasingly vital factor for many firms. Several organizations have encountered problems when attempting to evaluate organizational performance. Measurement of p... Enterprise Information System management has become an increasingly vital factor for many firms. Several organizations have encountered problems when attempting to evaluate organizational performance. Measurement of performance metrics is a key challenge for a huge number of firms. In order to preserve relevance and adaptability in competitive markets, it has become essential to respond proactively to complex events through informed decision-making that is supported by technology. Therefore, the objective of this study was to apply neural networks to the modeling, simulation, and forecasting of the effects of the performance indicators of Enterprise Information Systems on the achievement of corporate objectives and value creation. A set of quantifiable and sizeable conditionally independent associations were derived using a simplified joint probability distribution technique. Bayesian Neural Networks were utilized to describe the link between random variables (features) and to concisely and easily specify the joint probability distribution. The research demonstrated that Bayesian networks could effectively explore complex logical linkages by employing probability to represent uncertainty and probabilistic rules;and by applying impact models from Bayesian taxonomies to achieve learning and reasoning processes. 展开更多
关键词 neural network Bayesian neural network Decision Support Predictor Forecasting Decision Support Enterprise architecture
下载PDF
Application of Artificial Neural Networks Based Monte Carlo Simulation in the Expert System Design and Control of Crude Oil Distillation Column of a Nigerian Refinery
13
作者 Lekan T. Popoola Alfred A. Susu 《Advances in Chemical Engineering and Science》 2014年第2期266-283,共18页
This research work investigated comparative studies of expert system design and control of crude oil distillation column (CODC) using artificial neural networks based Monte Carlo (ANNBMC) simulation of random processe... This research work investigated comparative studies of expert system design and control of crude oil distillation column (CODC) using artificial neural networks based Monte Carlo (ANNBMC) simulation of random processes and artificial neural networks (ANN) model which were validated using experimental data obtained from functioning crude oil distillation column of Port-Harcourt Refinery, Nigeria by MATLAB computer program. Ninety percent (90%) of the experimental data sets were used for training while ten percent (10%) were used for testing the networks. The maximum relative errors between the experimental and calculated data obtained from the output variables of the neural network for CODC design were 1.98 error % and 0.57 error % when ANN only and ANNBMC were used respectively while their respective values for the maximum relative error were 0.346 error % and 0.124 error % when they were used for the controller prediction. Larger number of iteration steps of below 2500 and 5000 were required to achieve convergence of less than 10-7?for the training error using ANNBMC for both the design of the CODC and controller respectively while less than 400 and 700 iteration steps were needed to achieve convergence of 10-4?using ANN only. The linear regression analysis performed revealed the minimum and maximum prediction accuracies to be 80.65% and 98.79%;and 98.38% and 99.98% when ANN and ANNBMC were used for the CODC design respectively. Also, the minimum and maximum prediction accuracies were 92.83% and 99.34%;and 98.89% and 99.71% when ANN and ANNBMC were used for the CODC controller respectively as both methodologies have excellent predictions. Hence, artificial neural networks based Monte Carlo simulation is an effective and better tool for the design and control of crude oil distillation column. 展开更多
关键词 NEURON Monte Carlo Simulation CRUDE Oil DISTILLATION Column Artificial neural networks architecture REFINERY Design Control
下载PDF
Development of Airfoils Based on Their Aerodynamic Characteristics Using Artificial Neural Networks
14
作者 Bruno da Cunha Diniz Raimundo Carlos Silverio Freire Junior Sandi Itamar Schafer de Souza 《Journal of Mechanics Engineering and Automation》 2014年第5期372-381,共10页
One of the main concerns in Engineering nowadays is the development of aircrafts of low consumption and high performance. For this purpose, airfoils are studied and designed to have an elevated lift coefficient and a ... One of the main concerns in Engineering nowadays is the development of aircrafts of low consumption and high performance. For this purpose, airfoils are studied and designed to have an elevated lift coefficient and a low drag coefficient, thus generating a highly efficient airfoil. The higher the efficiency value is, the lower the aircraft fuel consumption will be; thus improving its performance. In this sense, this work aims to develop a tool for airfoil creation from some desired characteristics, such as the lift and drag coefficients and maximum efficiency rate, using an algorithm based on an ANN (artificial neural network). In order to do so, a database of aerodynamic characteristics with a total of 300 airfoils was initially collected from the XFoil software. Then, through a routine implemented in the MATLAB software, network architectures of one, two, three and four modules were trained, using the back propagation algorithm and momentum. The cross-validation technique was applied to analyze the results, evaluating which network possesses the lowest value in RMS (root-mean-square) error. In this case, the best result obtained was from the two-module architecture with two hidden neuron layers. The airfoils developed by this network, in the regions with the lowest RMS, were compared to the same airfoils imported to XFoil. The presented work offers as a contribution, in relation to other works involving ANN applied to fluid mechanics, the development of airfoils from their aerodynamic characteristics. 展开更多
关键词 AIRFOILS aerodynamic characteristics artificial neural networks network architecture.
下载PDF
An Implementation and Improvement of Convolutional Neural Networks on HSA Platform
15
作者 Zhenshan Bao Qi Luo Wenbo Zhang 《国际计算机前沿大会会议论文集》 2017年第1期150-152,共3页
Nowadays,the most heterogeneous architectures were made up by the various IP modules of different hardware vendors,but this model is less efficiently.In order to solve this problem,AMD joint other hardware vendors pro... Nowadays,the most heterogeneous architectures were made up by the various IP modules of different hardware vendors,but this model is less efficiently.In order to solve this problem,AMD joint other hardware vendors proposed heterogeneous system architecture(HSA)specification.On the one hand,the HSA could help developers to accelerate the design process and programming.On the other hand,it improved the system performance and reduced the power.In this paper we presented the implementation of a framework for accelerating training and classification of arbitrary Convolutional Neural Networks(CNNs)on the HSA,on the basis of implementation,we presented tow accelerated methods that are Online update weights and letting CPU to participate in calculation.Experimental results showed that the implementation of CNNs on HSA 4 to 10 times faster than on the CPU. 展开更多
关键词 HETEROGENEOUS computing HETEROGENEOUS system architecture Convolutional neural network BATCH UPDATE WEIGHTS
下载PDF
基于ABC-BP神经网络的环境敏感监测模型设计研究 被引量:1
16
作者 刘涛 《佳木斯大学学报(自然科学版)》 CAS 2019年第1期54-56,共3页
气流走向和风速变化对危险化学气体泄漏的走势有重要影响。基于此,提出神经网络结合的环境敏感监测模型,采用PSO-BP神经网络、GA-BP神经网络、ABC-BP神经网络进行的预测值与实际数据数值进行对比,并模拟气体泄漏后的短期风速的趋势。研... 气流走向和风速变化对危险化学气体泄漏的走势有重要影响。基于此,提出神经网络结合的环境敏感监测模型,采用PSO-BP神经网络、GA-BP神经网络、ABC-BP神经网络进行的预测值与实际数据数值进行对比,并模拟气体泄漏后的短期风速的趋势。研究发现,ABCBP神经网络算法可以在最短的时间内做出反馈,提高预测精度并将预测误差率控制到最低。 展开更多
关键词 BP神经网络 ABC算法 abc-bp神经网络架构
下载PDF
Modelling Spiking Neural Network from the Architecture Evaluation Perspective
17
作者 Yu Ji You-Hui Zhang Wei-Min Zheng 《Journal of Computer Science & Technology》 SCIE EI CSCD 2016年第1期50-59,共10页
The brain-inspired spiking neural network (SNN) computing paradigm offers the potential for low-power and scalable computing, suited to many intelligent tasks that conventional computational systems find difficult. ... The brain-inspired spiking neural network (SNN) computing paradigm offers the potential for low-power and scalable computing, suited to many intelligent tasks that conventional computational systems find difficult. On the other hand, NoC (network-on-chips) based very large scale integration (VLSI) systems have been widely used to mimic neuro- biological architectures (including SNNs). This paper proposes an evaluation methodology for SNN applications from the aspect of micro-architecture. First, we extract accurate SNN models from existing simulators of neural systems, second, a cycle-accurate NoC simulator is implemented to execute the aforementioned SNN applications to get timing and energy-consumption information. We believe this method not only benefits the exploration of NoC design space but also bridges the gap between applications (especially those from the neuroscientists' community) and neuromorphic hardware. Based on the method, we have evaluated some typical SNNs in terms of timing and energy. The method is valuable for the development of neuromorphic hardware and applications. 展开更多
关键词 spiking neural network network-ON-CHIP architecture simulation
原文传递
Optimized parallel architecture of evolutionary neural network for mass spectrometry data processing
18
作者 Amin Jarrah Bashar Haddad +1 位作者 Mohammad A.Al-Jarrah Muhammad Bassam Obeidat 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2017年第1期231-257,共27页
Evolutionary neural network(ENN)shows high performance in function optimization and in finding approximately global optima from searching large and complex spaces.It is one of the most efficient and adaptive optimizat... Evolutionary neural network(ENN)shows high performance in function optimization and in finding approximately global optima from searching large and complex spaces.It is one of the most efficient and adaptive optimization techniques used widely to provide candidate solutions that lead to the fitness of the problem.ENN has the extraordinary ability to search the global and learning the approximate optimal solution regardless of the gradient information of the error functions.However,ENN requires high computation and processing which requires parallel processing platforms such as field programmable gate arrays(FPGAs)and graphic processing units(GPUs)to achieve a good performance.This work involves different new implementations of ENN by exploring and adopting different techniques and opportunities for parallel processing.Different versions of ENN algorithm have also been implemented and parallelized on FPGAs platform for low latency by exploiting the parallelism and pipelining approaches.Real data form mass spectrometry data(MSD)application was tested to examine and verify our implementations.This is a very important and extensive computation application which needs to search and find the optimal features(peaks)in MSD in order to distinguish cancer patients from control patients.ENN algorithm is also implemented and parallelized on single core and GPU platforms for comparison purposes.The computation time of our optimized algorithm on FPGA and GPU has been improved by a factor of 6.75 and 6,respectively. 展开更多
关键词 Genetic algorithm neural networks evolutionary neural network fieldprogrammable gate array(FPGA) graphic processing unit(GPU) parallel architecture optimization techniques
原文传递
图计算体系结构和系统软件关键技术综述 被引量:1
19
作者 张宇 姜新宇 +6 位作者 余辉 赵进 齐豪 廖小飞 金海 王彪 余婷 《计算机研究与发展》 EI CSCD 北大核心 2024年第1期20-42,共23页
图计算作为分析事物之间关联关系的重要工具,近年来已成为各国政府及公司争夺的关键技术.学术界和工业界在图计算体系结构和系统软件关键技术方面取得了一定进展.然而,现实场景图计算大多具有动态变化、应用需求复杂多样等特征.这给图... 图计算作为分析事物之间关联关系的重要工具,近年来已成为各国政府及公司争夺的关键技术.学术界和工业界在图计算体系结构和系统软件关键技术方面取得了一定进展.然而,现实场景图计算大多具有动态变化、应用需求复杂多样等特征.这给图计算在基础理论、体系架构和系统软件关键技术方面提出了新的需求,同时也带来了新的挑战.为应对这些挑战,科研人员提出了一系列图计算系统或图计算加速器,通过高性能计算、并行计算等技术来优化图计算过程.综述国内外图计算体系结构和系统软件关键技术的研究发展现状,对国内外研究的最新进展进行归纳、比较和分析,并结合国家发展战略和重大应用需求,选取与我国国计民生密切相关的领域,从典型应用分析总结图计算相关技术的行业进展.最后,就未来的技术挑战和研究方向进行展望. 展开更多
关键词 图计算 体系结构 系统软件 图遍历 图挖掘 图神经网络 单机系统 分布式系统 加速器 行业应用
下载PDF
神经架构搜索综述 被引量:1
20
作者 孙仁科 皇甫志宇 +2 位作者 陈虎 李仲年 许新征 《计算机应用》 CSCD 北大核心 2024年第10期2983-2994,共12页
近几年,深度学习因具有强大的表征能力,已经在许多领域中取得了突破性的进展,而神经网络的架构对它的性能至关重要。然而,高性能的神经网络架构设计严重依赖研究人员的先验知识和经验,神经网络参数量庞大,难以设计最优的神经网络架构,... 近几年,深度学习因具有强大的表征能力,已经在许多领域中取得了突破性的进展,而神经网络的架构对它的性能至关重要。然而,高性能的神经网络架构设计严重依赖研究人员的先验知识和经验,神经网络参数量庞大,难以设计最优的神经网络架构,因此自动神经架构搜索(NAS)获得了极大的关注。NAS是一种使用机器学习的方法,可以在不需要大量人力的情况下,自动搜索最优网络架构的技术,是未来神经网络设计的重要手段之一。NAS本质上是一个搜索优化问题,通过对搜索空间、搜索策略和性能评估策略的设计,自动搜索最优的网络结构。从搜索空间、搜索策略和性能评估策略这3个方面详细且全面地分析、比较和总结目前NAS的研究进展,方便读者快速了解神经架构搜索的发展过程和各项技术的优缺点,并提出NAS未来可能的研究发展方向。 展开更多
关键词 神经架构搜索 深度学习 机器学习 神经网络 搜索空间 搜索策略 性能评估策略
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部