Transcriptional regulation plays a key role in the control of seed dormancy,and many transcription factors(TFs)have been documented.However,the mechanisms underlying the interactions between different TFs within a tra...Transcriptional regulation plays a key role in the control of seed dormancy,and many transcription factors(TFs)have been documented.However,the mechanisms underlying the interactions between different TFs within a transcriptional complex regulating seed dormancy remain largely unknown.Here,we showed that TF PHYTOCHROME-INTERACTING FACTOR4(PIF4)physically interacted with the abscisic acid(ABA)signaling responsive TF ABSCISIC ACID INSENSITIVE4(ABI4)to act as a transcriptional complex to promote ABA biosynthesis and signaling,finally deepening primary seed dormancy.Both pif4 and abi4 single mutants exhibited a decreased primary seed dormancy phenotype,with a synergistic effect in the pif4/abi4 double mutant.PIF4 binds to ABI4 to form a heterodimer,and ABI4 stabilizes PIF4 at the protein level,whereas PIF4 does not affect the protein stabilization of ABI4.Subsequently,both TFs independently and synergistically promoted the expression of ABI4 and NCED6,a key gene for ABA anabolism.The genetic evidence is also consistent with the phenotypic,physiological and biochemical analysis results.Altogether,this study revealed a transcriptional regulatory cascade in which the PIF4–ABI4 transcriptional activator complex synergistically enhanced seed dormancy by facilitating ABA biosynthesis and signaling.展开更多
ABSCISIC ACID-INSENSITIVE 4(ABI4) is a pivotal transcription factor which coordinates multiple aspects of plant growth and development as well as plant responses to environmental stresses.ABI4has been shown to be invo...ABSCISIC ACID-INSENSITIVE 4(ABI4) is a pivotal transcription factor which coordinates multiple aspects of plant growth and development as well as plant responses to environmental stresses.ABI4has been shown to be involved in regulating seedling photomorphogenesis;however,the underlying mechanism remains elusive.Here,we show that the role of ABI4 in regulating photomorphogenesis is generally regulated by sucrose,but ABI4 promotes hypocotyl elongation of Arabidopsis seedlings under blue(B) light under all tested sucrose concentrations.We further show that ABI4 physically interacts with PHYTOCHROME INTERACTING FACTOR 4(PIF4),a well-characterized growth-promoting transcription factor,and post-translationally promotes PIF4 protein accumulation under B light.Further analyses indicate that ABI4 directly interacts with the B light photoreceptors cryptochromes(CRYs) and inhibits the interactions between CRYs and PIF4,thus relieving CRY-mediated repression of PIF4 protein accumulation.In addition,while ABI4 could directly activate its own expression,CRYs enhance,whereas PIF4 inhibits,ABI4-mediated activation of the ABI4 promoter.Together,our study demonstrates that the ABI4–PIF4 module plays an important role in mediating CRY-induced B light signaling in Arabidopsis.展开更多
Increasing evidence has revealed that abscisic acid (ABA) negatively modulates ethylene biosynthesis, although the underlying mechanism remains unclear. To identify the factors involved, we conducted a screen for AB...Increasing evidence has revealed that abscisic acid (ABA) negatively modulates ethylene biosynthesis, although the underlying mechanism remains unclear. To identify the factors involved, we conducted a screen for ABA-insensitive mutants with altered ethylene production in Arabidopsis. A dominant allele of ABI4, abi4-152, which produces a putative protein with a 16-amino-acid truncation at the C-terminus of ABI4, reduces ethylene production. By contrast, two recessive knockout alleles of ABI4, abi4-102 and abi4-103, result in increased ethylene evolution, indicating that ABI4 negatively regulates ethylene produc- tion. Further analyses showed that expression of the ethylene biosynthesis genes ACS4, ACSS, and AC02 was significantly decreased in abi4-152 but increased in the knockout mutants, with partial dependence on ABA. Chromatin immunoprecipitation-quantitative PCR assays showed that ABI4 directly binds the pro- moters of these ethylene biosynthesis genes and that ABA enhances this interaction. A fusion protein containing the truncated ABI4-152 peptide accumulated to higher levels than its full-length counterpart in transgenic plants, suggesting that ABI4 is destabilized by its C terminus. Therefore, our results demon- strate that ABA negatively regulates ethylene production through ABI4-mediated transcriptional repression of the ethylene biosynthesis genes ACS4 and ACS8 in Arabidopsis.展开更多
Hydrogen sulfide(H2S)is a signaling molecule that regulates plant hormone and stress responses.The phytohormone abscisic acid(ABA)plays an important role in plant adaptation to unfavorable environmental conditions and...Hydrogen sulfide(H2S)is a signaling molecule that regulates plant hormone and stress responses.The phytohormone abscisic acid(ABA)plays an important role in plant adaptation to unfavorable environmental conditions and induces the persulfidation of L-CYSTEINE DESULFHYDRASE1(DES1)and the production of H2S in guard cells.However,it remains largely unclear how H2S and protein persulfidation participate in the relay of ABA signals.In this study,we discovered that ABSCISIC ACID INSENSITIVE 4(ABI4)acts downstream of DES1 in the control of ABA responses in Arabidopsis.ABI4 undergoes persulfidation at Cys250 that is triggered in a time-dependent manner by ABA,and loss of DES1 function impairs this process.Cys250 and its persulfidation are essential for ABI4 function in the regulation of plant responses to ABA and the H2S donor NaHS during germination,seedling establishment,and stomatal closure,which are abolished in the ABI4Cys250Ala mutated variant.Introduction of the ABI4Cys250Ala variant into the abi4 des1 mutant did not rescue its hyposensitivity to ABA.Cys250 is critical for the binding of ABI4 to its cognate motif in the promoter of Mitogen-Activated Protein Kinase Kinase Kinase 18(MAPKKK18),which propagates the MAPK signaling cascade induced by ABA.Furthermore,the DES1-mediated persulfidation of ABI4 enhances the transactivation activity of ABI4 toward MAPKKK18,and ABI4 can bind the DES1 promoter,forming a regulatory loop.Taken together,these findings advance our understanding of a post-translational regulatory mechanism and suggest that ABI4 functions as an integrator of ABA and MAPK signals through a process in which DES1-produced H2S persulfidates ABI4 at Cys250.展开更多
Plant growth is coordinately controlled by various environmental and hormonal signals,of which light and gibberellin(GA)signals are two critical factors with opposite effects on hypocotyl elongation.Although interacti...Plant growth is coordinately controlled by various environmental and hormonal signals,of which light and gibberellin(GA)signals are two critical factors with opposite effects on hypocotyl elongation.Although interactions between the light and GA signaling pathways have been studied extensively,the detailed regulatory mechanism of their direct crosstalk in hypocotyl elongation remains to be fully clarified.Previously,we reported that ABA INSENSITIVE 4(ABI4)controls hypocotyl elongation through its regulation of cellelongation-related genes,but whether it is also involved in GA signaling to promote hypocotyl elongation is unknown.In this study,we showthat promotion of hypocotyl elongation by GA is dependent on ABI4 activation.DELLAs interact directly with ABI4 and inhibit its DNA-binding activity.In turn,ABI4 combined with ELONGATED HYPOCOTYL 5(HY5),a key positive factor in light signaling,feedback regulates the expression of the GA2ox GA catabolism genes and thus modulates GA levels.Taken together,our results suggest that the DELLA-ABI4-HY5 module may serve as a molecular link that integrates GA and light signals to control hypocotyl elongation.展开更多
Abscisic acid (ABA) plays crucial roles in plant growth and development, as well as in response to various environmental stresses. To date, many regulatory genes involved in the ABA response network have been identi...Abscisic acid (ABA) plays crucial roles in plant growth and development, as well as in response to various environmental stresses. To date, many regulatory genes involved in the ABA response network have been identified; however, their roles have remained to be fully elucidated. In this study, we iden- tified AtYY1, an Arabidopsis homolog of the mammalian C2H2 zinc-finger transcription factor Yin Yang 1 (YY1), as a novel negative regulator of the ABA response. AtYY1 is a dual-function transcription factor with both repression and activation domains. The expression of AtYY1 was induced by ABA and stress conditions including high salt and dehydration. The yyl mutant was more sensitive to ABA and NaCI than the wild-type, while overexpressing AtYY1 plants were less sensitive. AtYY1 loss also enhanced ABA-induced stomatal closing and drought resistance. Moreover, AtYYI can bind the ABA REPRESSOR1 (ABR1) promoter and directly upregulate ABR1 expression, as well as negatively regulate ABA- and saR-responsive gene expression. Additional analysis indicated that ABA INSENSITIVE4 (ABI4) might positively regulate AtYY1 expression and that ABR1 can antagonize this regulation. Our findings provide direct evidence that AtYY1 is a novel negative regulator of the ABA response network and that the ABI4-AtYY1-ABR1 regulatory pathway may fine-tune ABA-responsive gene expression in Arabidopsis.展开更多
In recent years, the transcription factor ABI4 has emerged as an important node of integration for externaland internal signals such as nutrient status and hormone signaling that modulates critical transitions during ...In recent years, the transcription factor ABI4 has emerged as an important node of integration for externaland internal signals such as nutrient status and hormone signaling that modulates critical transitions during the growthand development of plants. For this reason, understanding the mechanism of action and regulation of this protein rep-resents an important step towards the elucidation of crosstalk mechanisms in plants. However, this understanding hasbeen hindered due to the negligible levels of this protein as a result of multiple posttranscriptional regulations. To betterunderstand the function and regulation of the ABI4 protein in this work, we performed a functional analysis of severalevolutionarily conserved motifs. Based on these conserved motifs, we identified ortholog genes of ABI4 in differentplant species. The functionality of the putative ortholog from Theobroma cacao was demonstrated in transient expres-sion assays and in complementation studies in plants. The function of the highly conserved motifs was analyzed aftertheir deletion or mutagenesis in the Arabidopsis ABI4 sequence using mesophyll protoplasts. This approach permitted usto immunologically detect the ABI4 protein and identify some of the mechanisms involved in its regulation. We identi-fied sequences required for the nuclear localization (AP2-associated motif) as well as those for transcriptional activationfunction (LRP motif). Moreover, this approach showed that the protein stability of this transcription factor is controlledthrough protein degradation and subcellular localization and involves the AP2-associated and the PEST motifs. We dem-onstrated that the degradation of ABI4 protein through the PEST motif is mediated by the 26S proteasome in responseto changes in the sugar levels.展开更多
Although ABSCISIC ACID INSENSITIVE 4(ABI4)was initially demonstrated as a key positive regulator in the phytohormone abscisic acid(ABA)signaling cascade,multiple studies have now shown that it is actually involved in ...Although ABSCISIC ACID INSENSITIVE 4(ABI4)was initially demonstrated as a key positive regulator in the phytohormone abscisic acid(ABA)signaling cascade,multiple studies have now shown that it is actually involved in the regulation of several other cascades,including diverse phytohormone biogenesis and signaling pathways,various developmental processes(such as seed dormancy and germination,seedling establishment,and root development),disease resistance and lipid metabolism.Consistent with its versatile biological functions,ABI4 either activates or represses transcription of its target genes.The upstream regulators of ABI4 at both the transcription and post-transcription levels have also been documented in recent years.Consequently,a complicated network consisting of the direct target genes and upstreamregulators of ABI4,through which ABI4 participates in several phytohormone crosstalk networks,has been generated.In this review,we summarize current understanding of the sophisticated ABI4-mediated molecular networks,mainly focusing on diverse phytohormone(including ABA,gibberellin,cytokinin,ethylene,auxin,and jasmonic acid)crosstalks.We also discuss the potential mechanisms through which ABI4 receives the ABA signal,focusing on protein phosphorylation modification events.展开更多
Adventitious roots form from non-root tissues as part of normal development or in response to stress or wounding.The root primordia form in the source tissue,and during emergence the adventitious roots penetrate the i...Adventitious roots form from non-root tissues as part of normal development or in response to stress or wounding.The root primordia form in the source tissue,and during emergence the adventitious roots penetrate the inner cell layers and the epidermis;however,the mechanisms underlying this emergence remain largely unexplored.Here,we report that a regulatory module composed of the AP2/ERF transcription factor ABSCISIC ACID INSENSITIVE 4(ABI4),the MAP kinases MPK3 and MPK6,and the phosphatase PP2C12 plays an important role in the emergence of junction adventitious roots(J-ARs)from the root-hypocotyl junctions in Arabidopsis thaliana.ABI4 negatively regulates J-AR emergence,preventing the accumulation of reactive oxygen species and death of epidermal cells,which would otherwise facilitate J-AR emergence.Phosphorylation by MPK3/MPK6 activates ABI4 and dephosphorylation by PP2C12 inactivates ABI4.MPK3/MPK6 also directly phosphorylate and inactivate PP2C12 during J-AR emergence.We propose that this"double-check"mechanism increases the robustness of MAP kinase signaling and finely regulates the local programmed cell death required for J-AR emergence.展开更多
基金supported by the National Natural Science Foundation of China(31872804 and 32101670)Natural Science Basic Research Program of Shaanxi(2024JC-YBMS-151)+3 种基金Shaanxi Fundamental Science Research Project for Chemistry&Biology(22JHQ054 and 22JHZ007)GuangDong Basic and Applied Basic Research Foundation(2021A1515110341)the Innovation Foundation for Doctoral Dissertations of Northwestern Polytechnical University(CX2021040,CX2022079 and CX2023096)Postdoctoral Research Foundation of China(2021M692644,2021M702674)。
文摘Transcriptional regulation plays a key role in the control of seed dormancy,and many transcription factors(TFs)have been documented.However,the mechanisms underlying the interactions between different TFs within a transcriptional complex regulating seed dormancy remain largely unknown.Here,we showed that TF PHYTOCHROME-INTERACTING FACTOR4(PIF4)physically interacted with the abscisic acid(ABA)signaling responsive TF ABSCISIC ACID INSENSITIVE4(ABI4)to act as a transcriptional complex to promote ABA biosynthesis and signaling,finally deepening primary seed dormancy.Both pif4 and abi4 single mutants exhibited a decreased primary seed dormancy phenotype,with a synergistic effect in the pif4/abi4 double mutant.PIF4 binds to ABI4 to form a heterodimer,and ABI4 stabilizes PIF4 at the protein level,whereas PIF4 does not affect the protein stabilization of ABI4.Subsequently,both TFs independently and synergistically promoted the expression of ABI4 and NCED6,a key gene for ABA anabolism.The genetic evidence is also consistent with the phenotypic,physiological and biochemical analysis results.Altogether,this study revealed a transcriptional regulatory cascade in which the PIF4–ABI4 transcriptional activator complex synergistically enhanced seed dormancy by facilitating ABA biosynthesis and signaling.
基金supported by grants from the National Natural Science Foundation of China(32225006)the Beijing Natural Science Foundation(5232011)+1 种基金the Chinese Universities Scientific Fund(2024TC166)by the Postdoctoral Fel owship Program of CPSF under Grant Number GZC20230717。
文摘ABSCISIC ACID-INSENSITIVE 4(ABI4) is a pivotal transcription factor which coordinates multiple aspects of plant growth and development as well as plant responses to environmental stresses.ABI4has been shown to be involved in regulating seedling photomorphogenesis;however,the underlying mechanism remains elusive.Here,we show that the role of ABI4 in regulating photomorphogenesis is generally regulated by sucrose,but ABI4 promotes hypocotyl elongation of Arabidopsis seedlings under blue(B) light under all tested sucrose concentrations.We further show that ABI4 physically interacts with PHYTOCHROME INTERACTING FACTOR 4(PIF4),a well-characterized growth-promoting transcription factor,and post-translationally promotes PIF4 protein accumulation under B light.Further analyses indicate that ABI4 directly interacts with the B light photoreceptors cryptochromes(CRYs) and inhibits the interactions between CRYs and PIF4,thus relieving CRY-mediated repression of PIF4 protein accumulation.In addition,while ABI4 could directly activate its own expression,CRYs enhance,whereas PIF4 inhibits,ABI4-mediated activation of the ABI4 promoter.Together,our study demonstrates that the ABI4–PIF4 module plays an important role in mediating CRY-induced B light signaling in Arabidopsis.
文摘Increasing evidence has revealed that abscisic acid (ABA) negatively modulates ethylene biosynthesis, although the underlying mechanism remains unclear. To identify the factors involved, we conducted a screen for ABA-insensitive mutants with altered ethylene production in Arabidopsis. A dominant allele of ABI4, abi4-152, which produces a putative protein with a 16-amino-acid truncation at the C-terminus of ABI4, reduces ethylene production. By contrast, two recessive knockout alleles of ABI4, abi4-102 and abi4-103, result in increased ethylene evolution, indicating that ABI4 negatively regulates ethylene produc- tion. Further analyses showed that expression of the ethylene biosynthesis genes ACS4, ACSS, and AC02 was significantly decreased in abi4-152 but increased in the knockout mutants, with partial dependence on ABA. Chromatin immunoprecipitation-quantitative PCR assays showed that ABI4 directly binds the pro- moters of these ethylene biosynthesis genes and that ABA enhances this interaction. A fusion protein containing the truncated ABI4-152 peptide accumulated to higher levels than its full-length counterpart in transgenic plants, suggesting that ABI4 is destabilized by its C terminus. Therefore, our results demon- strate that ABA negatively regulates ethylene production through ABI4-mediated transcriptional repression of the ethylene biosynthesis genes ACS4 and ACS8 in Arabidopsis.
基金supported by grants from the National Natural Science Foundation of China(31670255)the National Natural Science Foundation of China of Jiangsu Province(BK20200561,BK20200282,BK20161447)+3 种基金the National Science Fund for Outstanding Young Scholars(21922702)the China Postdoctoral Science Foundation(2019M661860)the Fundamental Research Funds for the Central Universities(KYZ201859)the European Regional Development Fund through the Agenda Estatal de Investigacion(grant no.PID2019-109785GB-IOO).
文摘Hydrogen sulfide(H2S)is a signaling molecule that regulates plant hormone and stress responses.The phytohormone abscisic acid(ABA)plays an important role in plant adaptation to unfavorable environmental conditions and induces the persulfidation of L-CYSTEINE DESULFHYDRASE1(DES1)and the production of H2S in guard cells.However,it remains largely unclear how H2S and protein persulfidation participate in the relay of ABA signals.In this study,we discovered that ABSCISIC ACID INSENSITIVE 4(ABI4)acts downstream of DES1 in the control of ABA responses in Arabidopsis.ABI4 undergoes persulfidation at Cys250 that is triggered in a time-dependent manner by ABA,and loss of DES1 function impairs this process.Cys250 and its persulfidation are essential for ABI4 function in the regulation of plant responses to ABA and the H2S donor NaHS during germination,seedling establishment,and stomatal closure,which are abolished in the ABI4Cys250Ala mutated variant.Introduction of the ABI4Cys250Ala variant into the abi4 des1 mutant did not rescue its hyposensitivity to ABA.Cys250 is critical for the binding of ABI4 to its cognate motif in the promoter of Mitogen-Activated Protein Kinase Kinase Kinase 18(MAPKKK18),which propagates the MAPK signaling cascade induced by ABA.Furthermore,the DES1-mediated persulfidation of ABI4 enhances the transactivation activity of ABI4 toward MAPKKK18,and ABI4 can bind the DES1 promoter,forming a regulatory loop.Taken together,these findings advance our understanding of a post-translational regulatory mechanism and suggest that ABI4 functions as an integrator of ABA and MAPK signals through a process in which DES1-produced H2S persulfidates ABI4 at Cys250.
基金supported by the National Key Research and Development Program(2022YFF1001700,2020YFA0907600)the National Natural Sci-ence Foundation of China(31700204,32170258,U2004204)+3 种基金the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021JJLH0044)the Natural Science Foundation of Henan Province(222300420026)Central Plains Scholar(234000510005)the 111 Project(#D16014,Q.W.).
文摘Plant growth is coordinately controlled by various environmental and hormonal signals,of which light and gibberellin(GA)signals are two critical factors with opposite effects on hypocotyl elongation.Although interactions between the light and GA signaling pathways have been studied extensively,the detailed regulatory mechanism of their direct crosstalk in hypocotyl elongation remains to be fully clarified.Previously,we reported that ABA INSENSITIVE 4(ABI4)controls hypocotyl elongation through its regulation of cellelongation-related genes,but whether it is also involved in GA signaling to promote hypocotyl elongation is unknown.In this study,we showthat promotion of hypocotyl elongation by GA is dependent on ABI4 activation.DELLAs interact directly with ABI4 and inhibit its DNA-binding activity.In turn,ABI4 combined with ELONGATED HYPOCOTYL 5(HY5),a key positive factor in light signaling,feedback regulates the expression of the GA2ox GA catabolism genes and thus modulates GA levels.Taken together,our results suggest that the DELLA-ABI4-HY5 module may serve as a molecular link that integrates GA and light signals to control hypocotyl elongation.
基金This work was financially supported by grants from the National Transgenic Animals & Plants Research Project (2009ZX08009-069B, 2013ZX08009-003), the State Key Basic Research and Development Plan (2010CB126003), and the China Postdoctoral Science Foundation (20080430370).
文摘Abscisic acid (ABA) plays crucial roles in plant growth and development, as well as in response to various environmental stresses. To date, many regulatory genes involved in the ABA response network have been identified; however, their roles have remained to be fully elucidated. In this study, we iden- tified AtYY1, an Arabidopsis homolog of the mammalian C2H2 zinc-finger transcription factor Yin Yang 1 (YY1), as a novel negative regulator of the ABA response. AtYY1 is a dual-function transcription factor with both repression and activation domains. The expression of AtYY1 was induced by ABA and stress conditions including high salt and dehydration. The yyl mutant was more sensitive to ABA and NaCI than the wild-type, while overexpressing AtYY1 plants were less sensitive. AtYY1 loss also enhanced ABA-induced stomatal closing and drought resistance. Moreover, AtYYI can bind the ABA REPRESSOR1 (ABR1) promoter and directly upregulate ABR1 expression, as well as negatively regulate ABA- and saR-responsive gene expression. Additional analysis indicated that ABA INSENSITIVE4 (ABI4) might positively regulate AtYY1 expression and that ABR1 can antagonize this regulation. Our findings provide direct evidence that AtYY1 is a novel negative regulator of the ABA response network and that the ABI4-AtYY1-ABR1 regulatory pathway may fine-tune ABA-responsive gene expression in Arabidopsis.
文摘In recent years, the transcription factor ABI4 has emerged as an important node of integration for externaland internal signals such as nutrient status and hormone signaling that modulates critical transitions during the growthand development of plants. For this reason, understanding the mechanism of action and regulation of this protein rep-resents an important step towards the elucidation of crosstalk mechanisms in plants. However, this understanding hasbeen hindered due to the negligible levels of this protein as a result of multiple posttranscriptional regulations. To betterunderstand the function and regulation of the ABI4 protein in this work, we performed a functional analysis of severalevolutionarily conserved motifs. Based on these conserved motifs, we identified ortholog genes of ABI4 in differentplant species. The functionality of the putative ortholog from Theobroma cacao was demonstrated in transient expres-sion assays and in complementation studies in plants. The function of the highly conserved motifs was analyzed aftertheir deletion or mutagenesis in the Arabidopsis ABI4 sequence using mesophyll protoplasts. This approach permitted usto immunologically detect the ABI4 protein and identify some of the mechanisms involved in its regulation. We identi-fied sequences required for the nuclear localization (AP2-associated motif) as well as those for transcriptional activationfunction (LRP motif). Moreover, this approach showed that the protein stability of this transcription factor is controlledthrough protein degradation and subcellular localization and involves the AP2-associated and the PEST motifs. We dem-onstrated that the degradation of ABI4 protein through the PEST motif is mediated by the 26S proteasome in responseto changes in the sugar levels.
基金supported by funding from the National Natural Science Foundation of China(31872804,31701064)the Talents Team Construction Fund of Northwestern Polytechnical University(31020190QD007)the National Key Research and Development Program of China(2017YFD0201300)。
文摘Although ABSCISIC ACID INSENSITIVE 4(ABI4)was initially demonstrated as a key positive regulator in the phytohormone abscisic acid(ABA)signaling cascade,multiple studies have now shown that it is actually involved in the regulation of several other cascades,including diverse phytohormone biogenesis and signaling pathways,various developmental processes(such as seed dormancy and germination,seedling establishment,and root development),disease resistance and lipid metabolism.Consistent with its versatile biological functions,ABI4 either activates or represses transcription of its target genes.The upstream regulators of ABI4 at both the transcription and post-transcription levels have also been documented in recent years.Consequently,a complicated network consisting of the direct target genes and upstreamregulators of ABI4,through which ABI4 participates in several phytohormone crosstalk networks,has been generated.In this review,we summarize current understanding of the sophisticated ABI4-mediated molecular networks,mainly focusing on diverse phytohormone(including ABA,gibberellin,cytokinin,ethylene,auxin,and jasmonic acid)crosstalks.We also discuss the potential mechanisms through which ABI4 receives the ABA signal,focusing on protein phosphorylation modification events.
基金This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciencesthe Ministry of Agriculture of China(grant no.2016ZX08009003-005).
文摘Adventitious roots form from non-root tissues as part of normal development or in response to stress or wounding.The root primordia form in the source tissue,and during emergence the adventitious roots penetrate the inner cell layers and the epidermis;however,the mechanisms underlying this emergence remain largely unexplored.Here,we report that a regulatory module composed of the AP2/ERF transcription factor ABSCISIC ACID INSENSITIVE 4(ABI4),the MAP kinases MPK3 and MPK6,and the phosphatase PP2C12 plays an important role in the emergence of junction adventitious roots(J-ARs)from the root-hypocotyl junctions in Arabidopsis thaliana.ABI4 negatively regulates J-AR emergence,preventing the accumulation of reactive oxygen species and death of epidermal cells,which would otherwise facilitate J-AR emergence.Phosphorylation by MPK3/MPK6 activates ABI4 and dephosphorylation by PP2C12 inactivates ABI4.MPK3/MPK6 also directly phosphorylate and inactivate PP2C12 during J-AR emergence.We propose that this"double-check"mechanism increases the robustness of MAP kinase signaling and finely regulates the local programmed cell death required for J-AR emergence.