期刊文献+
共找到2,248篇文章
< 1 2 113 >
每页显示 20 50 100
Influence of Confined Concrete Models on the Seismic Response of RC Frames
1
作者 Hüseyin Bilgin Bredli Plaku 《Structural Durability & Health Monitoring》 EI 2024年第3期197-222,共26页
In this study, the influence of confined concrete models on the response of reinforced concrete structures is investigatedat member and global system levels. The commonly encountered concrete models such as Modified K... In this study, the influence of confined concrete models on the response of reinforced concrete structures is investigatedat member and global system levels. The commonly encountered concrete models such as Modified Kent-Park, Saatçioğlu-Razvi, and Mander are considered. Two moment-resisting frames designed according to thepre-modern code are taken into consideration to reflect the example of an RC moment-resisting frame in thecurrent building stock. The building is in an earthquake-prone zone located on Z3 Soil Type. The inelasticresponse of the building frame is modelled by considering the plastic hinges formed on each beam and columnelement for different concrete classes and stirrups spacings. The models are subjected to non-linear static analyses.The differences between confined concrete models are comparatively investigated at both reinforced concretemember and system levels. Based on the results of the comparative analysis, it is revealed that the column behaviouris mostly influenced by the choice of model, due to axial loads and confinement effects, while the beams areless affected, and also it is observed that the differences exhibited in the moment-curvature response of columncross-sections do not significantly affect the overall behaviour of the global system. This highlights the critical roleof model selection relative to the concrete strength and stirrup spacing of the member. 展开更多
关键词 Non-linear static analysis moment-curvature relationships plastic hinges concrete confinement models seismic action
下载PDF
Influence of the Partial Substitution of Bitumen by a Mixture of Sulphur and Tyre and Plastic Bottle Powders on the Behaviour of Bituminous Concrete
2
作者 Parfait Isidore Mbenkoue Mbida Déodonne Kunwufine +1 位作者 Charles Bwemba Michel Mbessa 《Journal of Minerals and Materials Characterization and Engineering》 2023年第6期213-223,共11页
This article deals with the influence of the partial substitution of bitumen by a mixture of sulphur and tyre and plastic bottle powders on the characterization of asphalt concrete. The approach adopted was to subject... This article deals with the influence of the partial substitution of bitumen by a mixture of sulphur and tyre and plastic bottle powders on the characterization of asphalt concrete. The approach adopted was to subject a control asphalt concrete to level 2 formulation tests as well as those modified at 10%, 20%, 30% and 40% by substituting bitumen with a mixture of tyre powder, plastic bottle powder and sulphur at 40%, 28% and 32% respectively. The results of the PCG, Duriez and rutting tests carried out on the control and modified bituminous concretes (manufactured using the wet process) revealed three (03) major findings, in particular with regard to workability, resistance to simple compression and rutting. The experimental results show an increasing trend in the essential parameters. At 40% substitution, there was a 22.73% increase in compactness, reflecting a significant improvement in the material’s workability. With regard to simple compressive strength, the increase is 34.02% at 40% substitution, highlighting the limitation of crack formation and propagation under heavy precipitation. With regard to rutting, the 16% drop in susceptibility at 40% substitution reflects a significant improvement in the behaviour of the material under dynamic mechanical stresses in heavy precipitation. The improvement in these behaviours results from the insertion of the plastic bottle powder into the interstices of the granular skeleton, thus reducing its cellular structure, and also from the interactions between the sulphur with the tyre powder and the sulphur with the plastic bottle powder, i.e. cross-linking or vulcanisation. 展开更多
关键词 Bituminous concrete Tyre Powder plastic Bottle Powder SULPHUR
下载PDF
Stress-strain behavior of plastic concrete using monotonic triaxial compression tests 被引量:14
3
作者 Y.Pashang Pisheh S.M.Mir Mohammad Hosseini 《Journal of Central South University》 SCIE EI CAS 2012年第4期1125-1131,共7页
The mechanical behavior of plastic concrete used in the cut-off walls of earth dams has been studied. Triaxial compression tests on the specimens in various ages and mix designs under different confining pressures hav... The mechanical behavior of plastic concrete used in the cut-off walls of earth dams has been studied. Triaxial compression tests on the specimens in various ages and mix designs under different confining pressures have been done and the stress-strain behavior of such materials and their strength parameter changes have been experimentally investigated. It has been observed that increasing the confining pressures applied on the specimens causes the material behavior to be alike the more ductile materials and the compressive strength increases considerably as well. Moreover, a parametric study has been carded out to investigate the influence of essential parameters on the shear strength parameters of these materials. According to the research, increasing the coarse to fine aggregates ratio leads to the increase of compressive strength of the specimens as well as the increase of the cohesion and internal friction angle of the materials. Furthermore, the bentonite content decrease and the cement factor increase result in an increase of the cohesion parameter of plastic concretes and decrease of the internal friction angle of such materials. 展开更多
关键词 plastic concrete stress-strain behavior triaxial compression test STRENGTH elastic modulus
下载PDF
Evaluation of Blast-Resistant Performance Predicted by Damaged Plasticity Model for Concrete 被引量:8
4
作者 还毅 方秦 +1 位作者 陈力 张亚栋 《Transactions of Tianjin University》 EI CAS 2008年第6期414-421,共8页
in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC st... in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures, and all three failure modes were numerically simulated by the finite element software ABAQUS. Simulation results agree with the experimental observations. It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure, flexure-shear and direct shear failure modes of the blast-loaded RC structures. 展开更多
关键词 ABAQUS damaged plasticity model for concrete blast loading reinforced concrete structure failure mode
下载PDF
Strain coordination of quasi-plane-hypothesis for reinforced concrete beam strengthened by epoxy-bonded glass fiber reinforced plastic plate 被引量:4
5
作者 曾宪桃 丁亚红 王兴国 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第4期391-394,共4页
The testing of thirteen reinforeed concrete (RC) beams strengthened by epoxy-bonded glass fiber reinforced plastic plate (GFRP) shows that the RC beam and the GFRP plate with epoxy bonding on it can work fairly we... The testing of thirteen reinforeed concrete (RC) beams strengthened by epoxy-bonded glass fiber reinforced plastic plate (GFRP) shows that the RC beam and the GFRP plate with epoxy bonding on it can work fairly well in coordination to eaeh other. But there is relative slipping between RC beam and GFRP plate. And the strain of GFRP and steel rebar of RC beam satisfies the quasi-plane-hypothesis, that is, the strain of longitudinal fiher that parallels to the neutral axis of plated beam within the scope of effective height ( h0 ) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of GFRP and steel rebar satisfies the equation: εGFRP=Kεsteel. 展开更多
关键词 glass fiber reinforced plastic strengthening concrete beam quasi-plane-hypothesis
下载PDF
Experimental Research on the Physical and Mechanical Properties of Concrete with Recycled Plastic Aggregates 被引量:4
6
作者 Haikuan Wu Changwu Liu +1 位作者 Song Shi Kangliang Chen 《Journal of Renewable Materials》 SCIE EI 2020年第7期727-738,共12页
In order to study the effect of recycled plastic particles on the physical and mechanical properties of concrete,recycled plastic concrete with 0,3%,5%and 7%content(by weight)was designed.The compressive strength,spli... In order to study the effect of recycled plastic particles on the physical and mechanical properties of concrete,recycled plastic concrete with 0,3%,5%and 7%content(by weight)was designed.The compressive strength,splitting tensile strength and the change of mass caused by water absorption during curing were measured.The results show that the strength of concrete is increased by adding recycled plastic into concrete.Among them,the compressive strength and the splitting tensile strength of concrete is the best when the plastic content is 5%.With the increase of plastic content,the development speed of early strength slows down.Silane coupling agent plays a positive role in the strength of recycled plastic concrete.The water absorption saturation of concrete has been basically completed in the early stage.The addition of silane coupling agent makes the porosity of concrete reduce and the water absorption of concrete become poor.By summing up the physical and mechanical properties of recycled plastic concrete,it could be found that the addition of recycled plastic was effective for the modification of concrete materials.Under the control of the amount of recycled plastic,the strength of concrete with recycled plastic aggregates can meet the engineering requirements. 展开更多
关键词 Compressive strength recycled plastic concrete splitting tensile strength water absorption mechanical properties
下载PDF
Life Cycle Assessment of Creosote-Treated Wooden Railroad Crossties in the US with Comparisons to Concrete and Plastic Composite Railroad Crossties 被引量:2
7
作者 Christopher A. Bolin Stephen T. Smith 《Journal of Transportation Technologies》 2013年第2期149-161,共13页
Creosote-treated wooden railroad crossties have been used for more than a century to support steel rails and to transfer load from the rails to the underlying ballast while keeping the rails at the correct gauge. As t... Creosote-treated wooden railroad crossties have been used for more than a century to support steel rails and to transfer load from the rails to the underlying ballast while keeping the rails at the correct gauge. As transportation engineers look for improved service life and environmental performance in railway systems, alternatives to the creosote-treated wooden crosstie are being considered. This paper compares the cradle-to-grave environmental life cycle assessment (LCA) results of creosote-treated wooden railroad crossties with the primary alternative products: concrete and plastic composite (P/C) crossties. This LCA includes a life cycle inventory (LCI) to catalogue the input and output data from crosstie manufacture, service life, and disposition, and a life cycle impact assessment (LCIA) to evaluate greenhouse gas (GHG) emissions, fossil fuel and water use, and emissions with the potential to cause acidification, smog, ecotoxicity, and eutrophication. Comparisons of the products are made at a functional unit of 1.61 kilometers (1.0 mile) of rail-road track per year. This LCA finds that the manufacture, use, and disposition of creosote-treated wooden railroad crossties offers lower fossil fuel and water use and lesser environmental impacts than competing products manufactured of concrete and P/C. 展开更多
关键词 CREOSOTE Environmental Impact RAILROAD Crossties Life Cycle Assessment (LCA) concrete plastic COMPOSITE
下载PDF
Experimental study on ductility improvement of reinforced concrete rectangular Columns retrofitted with a new fiber reinforced plastics method 被引量:1
8
作者 刘涛 冯伟 +1 位作者 张智梅 欧阳煜 《Journal of Shanghai University(English Edition)》 CAS 2008年第1期7-14,共8页
Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation.... Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation. In this paper, a new retrofit method, which utilized fiber-reinforced plastics (FRP) confinement mechanism and anchorage of embedded bars, was developed aiming to retrofit non-ductile large RC rectangular columns to prevent the damage of the plastic hinges. Carbon FRP (CFRP) sheets and glass FRP (GFRP) bars were used in this test, and five scaled RC columns were tested to examine the function of this new method for improving the ductility of columns. Responses of columns were examined before and after being retrofitted. Test results indicate that this new composite method can be very effective to improve the anti-seismic behavior of non-ductile RC columns compared with normal CFRP sheets retrofitted column. 展开更多
关键词 seismic behavior RETROFIT reinforced concrete (RC) rectangular column DUCTILITY fiber-reinforced plastics (FRP)
下载PDF
Square concrete columns strengthened with carbon fiber reinforced plastics sheets at low temperatures 被引量:1
9
作者 马芹永 卢小雨 《Journal of Central South University》 SCIE EI CAS 2009年第5期835-840,共6页
Twenty-one square concrete columns were constructed and tested. The testing results indicate that bonded carbon fiber reinforced plastics(CFRP) sheets can be used to increase the strength and improve the serviceabilit... Twenty-one square concrete columns were constructed and tested. The testing results indicate that bonded carbon fiber reinforced plastics(CFRP) sheets can be used to increase the strength and improve the serviceability of damaged concrete columns at low temperatures. The failure of the specimens,in most cases,takes place within the middle half of the columns. And the failure of strengthened columns is sudden and explosive. The CFRP sheets increase both the axial load capacity and the ultimate concrete compressive strain of the columns. The ultimate loads of strengthened columns at-10,0 and 10 ℃ increase averagely by 9.09%,6.63% and 17.83%,respectively,as compared with those of the control specimens. The axial compressive strength of strengthened columns is related to the curing temperatures. The improvement of axial compressive strength decreases with reducing temperature,and when the temperature drops to a certain value,the improvement increases with falling temperature. 展开更多
关键词 carbon fiber reinforced plastics (CFRP) sheet square concrete column stress--strain model
下载PDF
Field study of plastic tube cast-in-place concrete pile
10
作者 陈永辉 曹德洪 +2 位作者 王新泉 杜海伟 张霆 《Journal of Central South University》 SCIE EI CAS 2008年第S2期195-202,共8页
The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on sin... The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on single piles with different forms of pile shoes and on their composite foundations were analyzed. The distribution patterns of axial force, shaft friction and toe resistance were studied based on the measurements taken from buried strain gauges. From the point of engineering application, the pile has merits in convenient quality control, high bearing capacity and reliable quality, showing higher reasonability, advancement and suitability than other ground improvement methods. The pile can be adopted properly to take place of ordinary ground improvement method, achieving greater economical and social benefits. 展开更多
关键词 plastic tube CAST-IN-PLACE concrete PILE SOFT ground improvement pile-supported type reinforced EMBANKMENT CONSTRUCTION equipment CONSTRUCTION workmanship
下载PDF
Analysis on plastic properties of reactive powder concrete continuous beams reinforced with GFRP bars
11
作者 卢姗姗 郑文忠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第4期471-475,共5页
To study the plastic properties of reactive powder concrete continuous beams reinforced with GFRP bars,the calculation programs for moment redistribution coefficients are prepared by using nonlinear analysis methods s... To study the plastic properties of reactive powder concrete continuous beams reinforced with GFRP bars,the calculation programs for moment redistribution coefficients are prepared by using nonlinear analysis methods such as moment-curvature,conjugate beam method and so on. By comparing the test results of existed FRP bars reinforced concrete continuous beams with simulation results,the accuracy of the calculation program is verified. Then 18 simulated GFRP bars reinforced reactive powder concrete continuous beams are selected whose change parameters are reinforcement ratio of mid-span and middle support. Through the nonlinear analysis of simulated beams,moment redistribution coefficients under mid-span concentrated loads,one-third point loads and uniformly distributed loads are obtained respectively. Thus the formula of moment redistribution coefficients is obtained by fitting moment redistribution coefficients and factors. The results show that the reactive powder concrete continuous beams reinforced with GFRP bars have good plastic properties. 展开更多
关键词 GFRP bars reactive powder concrete ( RPC) continuous beam plastic properties
下载PDF
Damage Detection in Reinforced Concrete Berthing Jetty Using a Plasticity Model Approach
12
作者 Srinivasan Chandrasekaran P.T.Ajesh Kumar 《Journal of Marine Science and Application》 CSCD 2019年第4期482-491,共10页
A conventional method of damage modeling by a reduction in stiffness is insufficient to model the complex non-linear damage characteristics of concrete material accurately.In this research,the concrete damage plastici... A conventional method of damage modeling by a reduction in stiffness is insufficient to model the complex non-linear damage characteristics of concrete material accurately.In this research,the concrete damage plasticity constitutive model is used to develop the numerical model of a deck beam on a berthing jetty in the Abaqus finite element package.The model constitutes a solid section of 3D hexahedral brick elements for concrete material embedded with 2D quadrilateral surface elements as reinforcements.The model was validated against experimental results of a beam of comparable dimensions in a cited literature.The validated beam model is then used in a three-point load test configuration to demonstrate its applicability for preliminary numerical evaluation of damage detection strategy in marine concrete structural health monitoring.The natural frequency was identified to detect the presence of damage and mode shape curvature was found sensitive to the location of damage. 展开更多
关键词 Structural health monitoring Damage detection natural frequency Mode shape CURVATURE Damage parameters concrete damaged plasticity model Finite element method Numericalmodel
下载PDF
GPR Tomographic Imaging of Concrete Tubes and Steel/Plastic Tanks Buried in IAG/USP Geophysical Test Site, Brazil
13
作者 Jorge Luís Porsani Emerson Rodrigo Almeida +1 位作者 Bruno Poluha Vinícius Rafael Neris dos Santos 《International Journal of Geosciences》 2017年第5期647-658,共12页
In this paper, the Ground Penetrating Radar (GPR) method was used to characterize concrete tubes and steel/plastic tanks buried in IAG/USP test site. The microwave tomography was used to improve the GPR images, aiming... In this paper, the Ground Penetrating Radar (GPR) method was used to characterize concrete tubes and steel/plastic tanks buried in IAG/USP test site. The microwave tomography was used to improve the GPR images, aiming to retrieve the geometry of the targets. The numerical modeling studies also were done in order to predict the GPR results of the buried targets and to give more reliability to the results interpretation. The targets were installed in the first shallow geophysical test site of the Brazil located at Institute of Astronomy, Geophysics, and Atmospheric Science (IAG) of the University of S?o Paulo (USP). GPR profiles of 200 MHz (shielded bistatic antennas) were acquired along three lines containing concrete tubes and steel/plastic tanks buried in subsoil. The concrete tubes show a hyperbolic reflector for the top, and the vertical tube also presented a reflection on its bottom. The horizontal steel tanks were characterized by a strong GPR reflection on their top. The empty plastic tank shows a strong reflector for the top with normal polarity. On the other hand, the plastic tank filled with water shows a weaker reflector for its top characterized by the inverted polarity of GPR signal when compared with empty plastic tank. The plastic tank filled with water also went characterized by the strong reflection to its bottom, being a good indicative to interpret GPR data on target in subsoil with some types of fluid inside of tank. The results of polarity difference for the top of tank can be used as guide pattern to identify buried tank empty or filled with water. The application of microwave tomography to the GPR data permitted to determine the position and get a good identification of the edges of the targets studied. The numeric modeling presented a good accordance with real data reducing the ambiguities in interpretation of results. These results can be used as a reference, and they can be extrapolated for areas where there is no subsurface information. 展开更多
关键词 Ground Penetrating Radar (GPR) Microwave Tomography Numeric Modeling concrete TUBES STEEL Tanks plastic Tanks IAG/USP Test SITE Brazil
下载PDF
Parameters Sensitivity Analysis and Correction for Concrete Damage Plastic Model 被引量:1
14
作者 Yaqin Jiang Pengfei Xu +1 位作者 Chengzhi Wang Dianshu Liu 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期103-108,共6页
In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through... In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through a convenient cube unit test was conducted. The results showed that the peak strength strain was independent of the hardening ductility parameter DH,but affected by AH,BH,and CH. The softening ductility was mainly related to the softening ductility parameter AS,but not affected by the damage ductility exponent BS. In case that the model with default parameters failed to match the AS-controlled damage softening phase,an optimized model with an AS correction was developed. The corrected model with the AS value of 2 matched well with the code model,and exhibited good feasibility in predicting the stress-strain curve of different grades of concrete. Moreover,the practicability of the corrected model was further validated by the conventional triaxial test. The simulated curve exhibited favorable consistence with the trial curve. Therefore,the model with parameter correction could provide a prospective reference for predicting the mechanical properties of concrete. 展开更多
关键词 damage-plastic model concrete sensitivity analysis parameter correction
下载PDF
Effect of Micro Silica on Compressive Strength of Plastic Concrete
15
作者 Mortaza Ali Ghorbani Majid Pasbani Khiavi 《Journal of Environmental Science and Engineering(B)》 2014年第4期205-209,共5页
This research describes a series of laboratory tests performed to characterize the mechanical properties of plastic concrete. The mechanical properties of plastic concrete are studied using a series of compression tes... This research describes a series of laboratory tests performed to characterize the mechanical properties of plastic concrete. The mechanical properties of plastic concrete are studied using a series of compression tests. Stress relaxation and controlled rate of loading tests are also performed to investigate the rate sensitivity and time-dependency of plastic concrete. An important requirement for the plastic concrete in such applications is adequate strength for the design loads. The replacement of cement content of plastic concrete by micro silica does not result in any significant decrease in workability of plastic concretes and hence, unlike the case for normal concretes, plasticizers or super plasticizers are not required to rectify the adverse effect of micro silica on workability. The aim of the experimental research was to investigate the effects of various levels of cement replacement by micro silica, including 0%, 3%, 6%, 9%, 12% and 15% on strength of plastic concrete. Obtained results show that the effect of micro silica on strength enhancement of plastic concretes is substantial and a replacement level of 15% resulted in 70%-180% increase in strength compared to the control mix. For normal concretes, the increase in strength due to incorporation of micro silica was generally reported as 30%-50%. 展开更多
关键词 plastic concrete compressive strength micro silica bentonite.
下载PDF
Concrete Filled Plastic Stub Columns Strength under Axial Compression
16
作者 Faesal Alatshan Abdelmajeed Altlomate Samie Hamad 《Open Journal of Civil Engineering》 2022年第1期87-100,共14页
The development of Concrete Filled Plastic Tube (CFPT) Stub Columns, is commonly used in the areas where the concrete structures interact with marine and saline environments, compared to regular concrete columns. Seve... The development of Concrete Filled Plastic Tube (CFPT) Stub Columns, is commonly used in the areas where the concrete structures interact with marine and saline environments, compared to regular concrete columns. Several CFPT stub column samples were prepared to investigate their behaviour under certain loading conditions. The main objective of this study was to conduct an experimental investigation to observe the effect of using CFPT with different diameters on the final strength of the concrete columns. In order to achieve this target, two types of loading conditions were applied, including separate load on the concrete and combined load on the concrete and the plastic tube simultaneously. The study revealed a significant improvement in the compressive strength of CFPT columns with different diameters (70 - 100 - 150 mm). Overall results show that the use of CFPT columns provides better mechanical performance compared to ordinary concrete columns. An evaluation of using the available calculation methods to predict the load-carrying capacities of CFPT. The study suggested the use of CFPT columns in situations where common concrete may cause significant issues related to its deterioration and disintegration in response to severe weather conditions. 展开更多
关键词 concrete plastic CFPT COMPOSITES COLUMNS COMPRESSIVE
下载PDF
Experimental Investigation of “Scale Influence on Plastic Rotational Capacity of Reinforced Concrete Beams”
17
作者 Moh’d El Khatieb 《Engineering(科研)》 2016年第4期196-203,共8页
The importance of the geometrical effect in practical design has been evaluated, showing that an overestimation of the actual member rotation is very likely if the available rotation capacity is based on the evaluatio... The importance of the geometrical effect in practical design has been evaluated, showing that an overestimation of the actual member rotation is very likely if the available rotation capacity is based on the evaluation of the behavior of the reference members within a limited size range. The increase of ductility with decreasing member size has been interpreted in fracture mechanics of reinforced concrete. In fracture mechanics it’s seen that beams with higher dimensions are brittle, while those with small dimensions are ductile, so it’s important here to clarify if the same material and design concepts can be applied for reinforced concrete beams with different scales. Three point bending test was executed on 20 reinforced concrete beams varying scale and slenderness ratio (where steel ratio being kept constant). The experimental results obtained varying beam slenderness and beam depth will be used to analyze the structural response for a practical construction, taking in consideration the size effect, these beams are normally designed in such a way that the distribution of their internal forces over the transversal section has been calculated as per elastic beam theory, while the beam dimension will be designed as per the ultimate limit state to obtain a ductile response of the reinforced concrete beams which is necessary to guarantee the structural safety [1]. 展开更多
关键词 Size Effect plastic Rotation Reinforced concrete Elastic Beam Theory Fracture Mechanics
下载PDF
Unsymmetrical Fibre-Reinforced Plastics for the Production of Curved Textile Reinforced Concrete Elements
18
作者 Henrik L.Funke Sandra Gelbrich +2 位作者 Andreas Ehrlich Lars Ulke-Winter Lothar Kroll 《Open Journal of Composite Materials》 2014年第4期191-200,共10页
A new constructive and technological approach was developed for the efficient production of large-dimensioned, curved freeform formworks, which allow the manufacturing of single and double-curved textile reinforced co... A new constructive and technological approach was developed for the efficient production of large-dimensioned, curved freeform formworks, which allow the manufacturing of single and double-curved textile reinforced concrete elements. The approach is based on a flexible, multi-layered formwork system, which consists of glass-fibre reinforced plastic (GFRP). Using the unusual structural behavior caused by anisotropy, these GFRP formwork elements permit a specific adjustment of defined curvature. The system design of the developed GFRP formwork and the concrete-lightweight-elements with stabilized spacer fabric was examined exhaustively. Prototypical curved freeform surfaces with different curvature radii were designed, numerically computed and produced. Furthermore, the fabric’s contour accuracy of the fabric was verified, and its integration was adjusted to loads. 展开更多
关键词 Anisotropic Formworks Textile-Reinforced concrete Fibre-Reinforced plastics Curved concrete
下载PDF
Effect of Flaky Plastic Particle Size and Volume Used as Partial Replacement of Gravel on Compressive Strength and Density of Concrete Mix
19
作者 Stanley O. Osubor Kamoru A. Salam Taiwo M. Audu 《Journal of Environmental Protection》 2019年第6期711-721,共11页
Common ways of disposing waste plastic such as incineration and landfilling have negative impacts on the environment. Partial replacement of natural aggregate in concrete with waste plastic including polyethylene tere... Common ways of disposing waste plastic such as incineration and landfilling have negative impacts on the environment. Partial replacement of natural aggregate in concrete with waste plastic including polyethylene terephthalate (PET) is more environmental friendly and sustainable. The effect of adding 5% to 20% waste plastic by volume of natural coarse aggregate (“gravel”) and plastic particle size (3 to 7 mm) on the density and compressive strength of plastic-concrete mix after 28 days of curing was studied. The results showed that density of the concrete decreased from 2406.7 to 2286.7 kg/m3 as waste plastic increased from 5% to 20% v/v compared with 2443.3 kg/m3 recorded by concrete without waste plastic. Change in particle size from 3 to 7 mm has no significant effect on the density of the plastic-concrete mix. The compressive strength decreased as the volume and particle size of waste plastic increased. When waste plastic volume changed from 5% to 20% v/v, the compressive strength decreased from 20.5 to 15 MPa, 18.6 to 14.3 MPa and 17.2 to 13.8 MPa for 3, 5 and 7 mm waste plastic particle size respectively while the concrete without plastic has 21.33 MPa. Therefore, the addition of 5% (v/v gravel) of flaky waste plastic in the concrete produces a lightweight concrete which could offer economic benefit without substantially reducing the compressive strength of the plastic-concrete mix. 展开更多
关键词 Flaky plastic COMPRESSIVE Strength DENSITY GRAVEL Particle Size plastic-concrete MIX
下载PDF
Effect of Partial Replacement of Coarse Aggregate with Electronic Waste Plastic in Light Weight Concrete
20
作者 Derrick Nii-Laryea Botchway John Bentil Charles Yeboah Henaku 《Journal of Management Science & Engineering Research》 2022年第2期38-44,共7页
This study assessed the usefulness of the replacement of coarse aggregate partially with electronic waste(e-waste)plastic in lightweight concrete since developing countries have been challenged with management of e-wa... This study assessed the usefulness of the replacement of coarse aggregate partially with electronic waste(e-waste)plastic in lightweight concrete since developing countries have been challenged with management of e-waste as well as high cost of coarse aggregates for concrete production.Coarse aggregates were replaced with e-waste plastic in concrete at 5%,10%,15%,and 20% for a concrete class of C20.The particle size distribution of the e-waste plastic aggregates was determined as well as the slump,compressive strength,water absorption and bulk density of the concrete.Generally,the slump decreased as the e-waste increased.The compressive strengths decreased for the 5%and 10%replacement of coarse aggregates with e-waste but increased for the 15% and 20% replacement of coarse aggregate with e-waste.0% water absorption was obtained for the 15% and 20% e-waste content while the 10%e-waste concrete obtained 0.01% and the 5% e-waste obtaining of 0.013% after 28days of curing.The densities of 5%,10%,15% and 20% e-waste plastic content decreased as compared to the 0% e-waste plastic content.The values of compressive strength obtained showed that coarse aggregate replacements by e-waste plastic at 15% and 20% may be appropriate for lightweight concrete of class C20/25 since compressive strengths ranged between 16.09 Nmm^(-2) and 22.87 Nmm^(-2).This implies that partial replacement of coarse aggregate with e-waste plastic may be useful for lightweight concrete as well as helping in eradicating the environment of the menace of e-waste plastic. 展开更多
关键词 Electronic waste plasticS Compressive strength Coarse aggregate concrete
下载PDF
上一页 1 2 113 下一页 到第
使用帮助 返回顶部