The effects of low-Co AB_5 type hydrogen storage alloys prepared by quenchingand annealing on the performances of MH-Ni batteries were investigated, and the characteristics ofthe low-Co AB_5 type hydrogen storage allo...The effects of low-Co AB_5 type hydrogen storage alloys prepared by quenchingand annealing on the performances of MH-Ni batteries were investigated, and the characteristics ofthe low-Co AB_5 type hydrogen storage alloys were compared with those of the high-Co AB_5 typehydrogen storage alloy as well. The results showed that the faster the cooling of the low-Cohydrogen storage alloy is, the better homogeneity of the chemical composition for the alloy and thelonger cycle life of the battery are, but the electrochemical discharge capacity and high-ratedischarge ability are reduced. The high-rate discharge ability and charge retention of MH-Nibatteries for the conventional as-cast annealed low-Co hydrogen storage alloy were superior to thosefor the rapidly quenched low-Co hydrogen storage alloy and the high-Co hydrogen storage alloy, buta little inferior in the cycle life.展开更多
In order to further reduce the cost of AB5 type rare earth-based hydrogen storage alloy, a low-Co AB5 type hydrogen storage alloy were by substituting Co with Cu and Fe.The characteristics of these alloys have been in...In order to further reduce the cost of AB5 type rare earth-based hydrogen storage alloy, a low-Co AB5 type hydrogen storage alloy were by substituting Co with Cu and Fe.The characteristics of these alloys have been investigated by means of XRD, PCT, and measurement of electrochemical capacity and cycle life.The test results show that the effect of these two kinds of substituting elements on discharge capacity is Cu > Fe, and the cycle life is on the contrary.Both of them have no distinct influence on activity speed, but activity speed increases with the decrease of Co.By the order way, the high discharge rate characteristics rise with the addition of Cu and decreasing of Co.展开更多
A traditional neural network was improved in two ways. An improved algorithm is associated into the network in order to enhance the optimization rate and predictability of the network. Two different methods were suppl...A traditional neural network was improved in two ways. An improved algorithm is associated into the network in order to enhance the optimization rate and predictability of the network. Two different methods were supplied to improve the generalization of the network. With this improved neural network, the properties of the AB_5-based hydrogen-storage alloys, the initial discharge capacity and capacity retention ratios after charge-discharge cycles, were predicted. A better prediction result was obtained by using the network.展开更多
LPCNi 3.55 Co 0.75 Mn 0.4 Al 0.3 hydrogen storage alloy was investigated, and the effects of thickness of its strip casting ingots(as cast) on the electrochemical performances were discussed. It was ...LPCNi 3.55 Co 0.75 Mn 0.4 Al 0.3 hydrogen storage alloy was investigated, and the effects of thickness of its strip casting ingots(as cast) on the electrochemical performances were discussed. It was found that the 0.2 C discharge capacity increased with the increase of the thickness (from 1 mm to 10 mm) of the ingots, mainly due to the enlargement of the unit cell volume; Among the thickness of the ingots in our study, 10 mm sample showed a better activation property; LPCNi 3.55 Co 0.75 Mn 0.4 Al 0.3 alloy with 10mm showed higher comprehensive properties than those with other thickness under 1C rate.展开更多
The effect of thickness (1 similar to 10 mm) of the ingots on the electrochemical properties of as-cast and annealed strip cast LPCNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys was investigated. It is found that the ...The effect of thickness (1 similar to 10 mm) of the ingots on the electrochemical properties of as-cast and annealed strip cast LPCNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys was investigated. It is found that the 0.2 C discharge capacity of as-cast LPCNi3.55Co0.75Mn0.4Al0.3 alloy increases with the increase of the thickness of the ingots. As-east alloy with the thickness of 10 mm shows better activation property, higher 1C discharge capacity and better cyclic stability than others. It is mainly contributed to its larger unit cell volume and less internal stress. Annealed LPCNi3.55Co0.75Mn0.4Al0.3 alloy with the thickness of 3 mm shows much better comprehensive electrochemical properties than as-east one; The cyclic. stability of the alloy with the thickness of 6 mm and the activation properties of the alloys with the thickness of 3 similar to 6 mm are improved after annealing. It is mainly owing to the great release of internal stress and the decrease of the segregation of Mn in the alloys.展开更多
The structure and electrochemical characteristics of La_(0.7)Mg_(0.3)Ni_(2.875)Co_(0.525)Mn_(0.1)-boron composite was studied systematically.The AB_(3) type hydrogen storage alloys La_(0.7)Mg_(0.3)Ni_(2.875)Co_(0.525)...The structure and electrochemical characteristics of La_(0.7)Mg_(0.3)Ni_(2.875)Co_(0.525)Mn_(0.1)-boron composite was studied systematically.The AB_(3) type hydrogen storage alloys La_(0.7)Mg_(0.3)Ni_(2.875)Co_(0.525)Mn_(0.1) were successfully synthesized by means of inter-media alloy La_(2)Mg_(17).The alloys were composited with boron at different weight rate.From the XRD analyses,each alloy of this series is mainly composed of(La,Mg)Ni_(3) phase and the LaNi_(5) phase,and the phase abundance of each phase varies with the boron weight rate,moreover,after composition,the c and cell volumes of(La,Mg)Ni_(3) phase increase,and the LaNi_(5) phase keep the same,which indicate that the boron may enter(La,Mg)Ni_(3) phase.The electrochemical studies show that the maximum discharge capacity of the composites decreases,but the cycling life improved.And the high rate discharge ability and exchange impendence spectroscopy(EIS)of the AB_(3) alloys and its composite were also studied.展开更多
The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni...The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni9 phase (PuNi3 structure) and La4MgNi19 phases (Ce5Co19+Pr5Co19 structure, namely A5B19 type). With the increase of the x value, the LaMg2Ni9 phase fades away and La4MgNi19 phases appear, while the abundance of LaNi5 phase firstly increases and then decreases. At the same time, the cell volume of LaNi5 phase and LaMg2Ni9 phase decreases. The electrochemical measurement shows that alloy electrodes could be activated in 4-5 cycles, and with the increase of the x value, the maximum discharge capacity gradually increases from 330.9 mA-h/g (x=0) to 366.8 mA-h/g (x=0.4), but the high-rate dischargeability (HRD) and cyclic stability (S) decrease somewhat (x=0.4, HRD600=82.32%, S100=73.8%). It is found that the HRD is mainly controlled by the electrocatalytic activity on the alloy electrode surface, and the decline of cyclic stability is due to the appearance of A5B19 type phase with larger hydrogen storage capacity, which leads to larger volume expansion and more intercrystalline stress and then easier pulverization during charging/discharging.展开更多
文摘The effects of low-Co AB_5 type hydrogen storage alloys prepared by quenchingand annealing on the performances of MH-Ni batteries were investigated, and the characteristics ofthe low-Co AB_5 type hydrogen storage alloys were compared with those of the high-Co AB_5 typehydrogen storage alloy as well. The results showed that the faster the cooling of the low-Cohydrogen storage alloy is, the better homogeneity of the chemical composition for the alloy and thelonger cycle life of the battery are, but the electrochemical discharge capacity and high-ratedischarge ability are reduced. The high-rate discharge ability and charge retention of MH-Nibatteries for the conventional as-cast annealed low-Co hydrogen storage alloy were superior to thosefor the rapidly quenched low-Co hydrogen storage alloy and the high-Co hydrogen storage alloy, buta little inferior in the cycle life.
文摘In order to further reduce the cost of AB5 type rare earth-based hydrogen storage alloy, a low-Co AB5 type hydrogen storage alloy were by substituting Co with Cu and Fe.The characteristics of these alloys have been investigated by means of XRD, PCT, and measurement of electrochemical capacity and cycle life.The test results show that the effect of these two kinds of substituting elements on discharge capacity is Cu > Fe, and the cycle life is on the contrary.Both of them have no distinct influence on activity speed, but activity speed increases with the decrease of Co.By the order way, the high discharge rate characteristics rise with the addition of Cu and decreasing of Co.
文摘A traditional neural network was improved in two ways. An improved algorithm is associated into the network in order to enhance the optimization rate and predictability of the network. Two different methods were supplied to improve the generalization of the network. With this improved neural network, the properties of the AB_5-based hydrogen-storage alloys, the initial discharge capacity and capacity retention ratios after charge-discharge cycles, were predicted. A better prediction result was obtained by using the network.
文摘LPCNi 3.55 Co 0.75 Mn 0.4 Al 0.3 hydrogen storage alloy was investigated, and the effects of thickness of its strip casting ingots(as cast) on the electrochemical performances were discussed. It was found that the 0.2 C discharge capacity increased with the increase of the thickness (from 1 mm to 10 mm) of the ingots, mainly due to the enlargement of the unit cell volume; Among the thickness of the ingots in our study, 10 mm sample showed a better activation property; LPCNi 3.55 Co 0.75 Mn 0.4 Al 0.3 alloy with 10mm showed higher comprehensive properties than those with other thickness under 1C rate.
文摘The effect of thickness (1 similar to 10 mm) of the ingots on the electrochemical properties of as-cast and annealed strip cast LPCNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys was investigated. It is found that the 0.2 C discharge capacity of as-cast LPCNi3.55Co0.75Mn0.4Al0.3 alloy increases with the increase of the thickness of the ingots. As-east alloy with the thickness of 10 mm shows better activation property, higher 1C discharge capacity and better cyclic stability than others. It is mainly contributed to its larger unit cell volume and less internal stress. Annealed LPCNi3.55Co0.75Mn0.4Al0.3 alloy with the thickness of 3 mm shows much better comprehensive electrochemical properties than as-east one; The cyclic. stability of the alloy with the thickness of 6 mm and the activation properties of the alloys with the thickness of 3 similar to 6 mm are improved after annealing. It is mainly owing to the great release of internal stress and the decrease of the segregation of Mn in the alloys.
基金This work was financially supported by the National Natural Science Foundation of China(No.20573058).
文摘The structure and electrochemical characteristics of La_(0.7)Mg_(0.3)Ni_(2.875)Co_(0.525)Mn_(0.1)-boron composite was studied systematically.The AB_(3) type hydrogen storage alloys La_(0.7)Mg_(0.3)Ni_(2.875)Co_(0.525)Mn_(0.1) were successfully synthesized by means of inter-media alloy La_(2)Mg_(17).The alloys were composited with boron at different weight rate.From the XRD analyses,each alloy of this series is mainly composed of(La,Mg)Ni_(3) phase and the LaNi_(5) phase,and the phase abundance of each phase varies with the boron weight rate,moreover,after composition,the c and cell volumes of(La,Mg)Ni_(3) phase increase,and the LaNi_(5) phase keep the same,which indicate that the boron may enter(La,Mg)Ni_(3) phase.The electrochemical studies show that the maximum discharge capacity of the composites decreases,but the cycling life improved.And the high rate discharge ability and exchange impendence spectroscopy(EIS)of the AB_(3) alloys and its composite were also studied.
基金Project (2008CL068L) supported by the Natural Science Research Project of Higher Education of Jiangsu Province, ChinaProject (50901036) supported by the National Natural Science Foundation of China
文摘The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni9 phase (PuNi3 structure) and La4MgNi19 phases (Ce5Co19+Pr5Co19 structure, namely A5B19 type). With the increase of the x value, the LaMg2Ni9 phase fades away and La4MgNi19 phases appear, while the abundance of LaNi5 phase firstly increases and then decreases. At the same time, the cell volume of LaNi5 phase and LaMg2Ni9 phase decreases. The electrochemical measurement shows that alloy electrodes could be activated in 4-5 cycles, and with the increase of the x value, the maximum discharge capacity gradually increases from 330.9 mA-h/g (x=0) to 366.8 mA-h/g (x=0.4), but the high-rate dischargeability (HRD) and cyclic stability (S) decrease somewhat (x=0.4, HRD600=82.32%, S100=73.8%). It is found that the HRD is mainly controlled by the electrocatalytic activity on the alloy electrode surface, and the decline of cyclic stability is due to the appearance of A5B19 type phase with larger hydrogen storage capacity, which leads to larger volume expansion and more intercrystalline stress and then easier pulverization during charging/discharging.