期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Surface Modification of AB_2 and AB_5 Hydrogen Storage Alloy Electrodes by the Hot-Charging Treatment
1
作者 Bo YU, Lian CHEN, Mingfen WEN, Ming TONG and Demin CHEN Institute of Matel Research, Chinese Academy of Sciences, Shenyang 110015, China Yanwen TIAN and Yuchun ZHAI The Northeastern University, Shenyang 110006, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第2期247-251,共5页
The effect of the hot-charging treatment on the performance of AB(2) and AB(5) hydrogen storage alloy electrodes was investigated. The result showed that the treatment can markedly improve the voltage plateau ratio (V... The effect of the hot-charging treatment on the performance of AB(2) and AB(5) hydrogen storage alloy electrodes was investigated. The result showed that the treatment can markedly improve the voltage plateau ratio (VPR), the high rate discharge ability (HRDA), the diffusion coefficient of hydrogen DH and the discharge capacity of the AB2 hydrogen storage alloy electrode. The SEM analysis showed that the hot-charging treatment brings about a Ni-rich surface due to the dissolution of Zr oxides. It is also very helpful for the improvement of the kinetic properties of AB2 hydrogen storage alloy electrode because the microcracking of the surface results in fresh surface. This can be the basic modification treatment for NiMH battery used in electric vehicles (EVs) in the future. But for AB(5) type alloys, the treatment has the disadvantage of impairing the comprehensive electrochemical properties, because the surface of the alloy may be corroded during the treatment. The mechanism of the surface modification of the electrode is also proposed. 展开更多
关键词 Surface Modification of AB2 and AB5 hydrogen storage alloy Electrodes by the Hot-Charging Treatment AB
下载PDF
Key technology and application of AB_(2) hydrogen storage alloy in fuel cell hydrogen supply system
2
作者 Ming Yao Jianguang Yuan +3 位作者 Bao Zhang Youhua Yan Shaoxiong Zhou Ying Wu 《Materials Reports(Energy)》 EI 2024年第1期113-122,共10页
At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages... At present,there is limited research on the application of fuel cell power generation system technology using solid hydrogen storage materials,especially in hydrogen-assisted two-wheelers.Considering the disadvantages of low hydrogen storage capacity and poor kinetics of hydrogen storage materials,our primary focus is to achieve smooth hydrogen ab-/desorption over a wide temperature range to meet the requirements of fuel cells and their integrated power generation systems.In this paper,the Ti_(0.9)Zr_(0.1)Mn_(1.45)V_(0.4)Fe_(0.15) hydrogen storage alloy was successfully prepared by arc melting.The maximum hydrogen storage capacity reaches 1.89 wt% at 318 K.The alloy has the capability to absorb 90% of hydrogen storage capacity within 50 s at 7 MPa and release 90% of hydrogen within 220 s.Comsol Multiphysics 6.0 software was used to simulate the hydrogen ab-/desorption processes of the tank.The flow rate of cooling water during hydrogen absorption varied in a gradient of(0.02 t x)m s^(-1)(x=0,0.02,0.04,0.06,0.08,0.1,0.12).Cooling water flow rate is positively correlated with the hydrogen absorption rate but negatively correlated with the cost.When the cooling rate is 0.06 m s^(-1),both simulation and experimentation have shown that the hydrogen storage tank is capable of steady hydrogen desorption for over 6 h at a flow rate of 2 L min^(-1).Based on the above conclusions,we have successfully developed a hydrogen-assisted two-wheeler with a range of 80 km and achieved regional demonstration operations in Changzhou and Shaoguan.This paper highlights the achievements of our team in the technological development of fuel cell power generation systems using solid hydrogen storage materials as hydrogen storage carriers and their application in twowheelers in recent years. 展开更多
关键词 AB_(2)hydrogen storage alloy hydrogen storage tanks Simulation hydrogen-electric coupling system Power-assisted two-wheelers
下载PDF
Research of heat treatment of low-Co AB_5 type hydrogen storage alloys for MH-Ni batteries 被引量:6
3
作者 GUOJinghong CHENDemin +2 位作者 LIUGuozhong YANGKe MAJun 《Rare Metals》 SCIE EI CAS CSCD 2003年第3期175-178,共4页
The effects of low-Co AB_5 type hydrogen storage alloys prepared by quenchingand annealing on the performances of MH-Ni batteries were investigated, and the characteristics ofthe low-Co AB_5 type hydrogen storage allo... The effects of low-Co AB_5 type hydrogen storage alloys prepared by quenchingand annealing on the performances of MH-Ni batteries were investigated, and the characteristics ofthe low-Co AB_5 type hydrogen storage alloys were compared with those of the high-Co AB_5 typehydrogen storage alloy as well. The results showed that the faster the cooling of the low-Cohydrogen storage alloy is, the better homogeneity of the chemical composition for the alloy and thelonger cycle life of the battery are, but the electrochemical discharge capacity and high-ratedischarge ability are reduced. The high-rate discharge ability and charge retention of MH-Nibatteries for the conventional as-cast annealed low-Co hydrogen storage alloy were superior to thosefor the rapidly quenched low-Co hydrogen storage alloy and the high-Co hydrogen storage alloy, buta little inferior in the cycle life. 展开更多
关键词 storage energy technology low-Co AB_5type hydrogen storage alloy ANNEALING MH-Ni battery
下载PDF
AB_5-type Hydrogen Storage Alloy Modified with Ti/Zr Used as Anodic Materials in Borohydride Fuel Cell 被引量:1
4
作者 Lianbang WANG Chunan MA +2 位作者 Xinbiao MAO Yuanming SUN Seijiro SUDA 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第6期831-835,共5页
Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hy... Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel. 展开更多
关键词 Fuel cell BOROHYDRIDE AB5-type hydrogen storage alloy Ball-milling method Heat treatment method
下载PDF
Phase structure and electrochemical properties of La_(0.7)Ce_(0.3)Ni_(3.75)Mn_(0.35)Al_(0.15)Cu_(0.75-x)Fe_x hydrogen storage alloys 被引量:2
5
作者 刘宝忠 李安铭 +2 位作者 范燕平 胡梦娟 张宝庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2730-2735,共6页
La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were inves... La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance. 展开更多
关键词 hydrogen storage alloy AB5-type hydrogen storage alloys phase structures electrochemical property KINETICS Ni-MH battery LaNi5 phase
下载PDF
Phase structure and electrochemical properties of La_(1.7+x)Mg_(1.3-x)(NiCoMn)_(9.3)(x=0-0.4) hydrogen storage alloys 被引量:2
6
作者 魏范松 黎莉 +2 位作者 项宏福 李惠 魏范娜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1995-1999,共5页
The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni... The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni9 phase (PuNi3 structure) and La4MgNi19 phases (Ce5Co19+Pr5Co19 structure, namely A5B19 type). With the increase of the x value, the LaMg2Ni9 phase fades away and La4MgNi19 phases appear, while the abundance of LaNi5 phase firstly increases and then decreases. At the same time, the cell volume of LaNi5 phase and LaMg2Ni9 phase decreases. The electrochemical measurement shows that alloy electrodes could be activated in 4-5 cycles, and with the increase of the x value, the maximum discharge capacity gradually increases from 330.9 mA-h/g (x=0) to 366.8 mA-h/g (x=0.4), but the high-rate dischargeability (HRD) and cyclic stability (S) decrease somewhat (x=0.4, HRD600=82.32%, S100=73.8%). It is found that the HRD is mainly controlled by the electrocatalytic activity on the alloy electrode surface, and the decline of cyclic stability is due to the appearance of A5B19 type phase with larger hydrogen storage capacity, which leads to larger volume expansion and more intercrystalline stress and then easier pulverization during charging/discharging. 展开更多
关键词 hydrogen storage alloy A5B19 type crystal structure electrochemical property La-Mg-Ni system
下载PDF
Effects of Strip Casting and Annealing on Electrochemical Properties of LPCNi_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3) Hydrogen Storage Alloys 被引量:6
7
作者 吴朝玲 陈云贵 +3 位作者 李锋 陶明大 涂铭旌 唐定骧 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第2期254-258,共5页
The effect of thickness (1 similar to 10 mm) of the ingots on the electrochemical properties of as-cast and annealed strip cast LPCNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys was investigated. It is found that the ... The effect of thickness (1 similar to 10 mm) of the ingots on the electrochemical properties of as-cast and annealed strip cast LPCNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys was investigated. It is found that the 0.2 C discharge capacity of as-cast LPCNi3.55Co0.75Mn0.4Al0.3 alloy increases with the increase of the thickness of the ingots. As-east alloy with the thickness of 10 mm shows better activation property, higher 1C discharge capacity and better cyclic stability than others. It is mainly contributed to its larger unit cell volume and less internal stress. Annealed LPCNi3.55Co0.75Mn0.4Al0.3 alloy with the thickness of 3 mm shows much better comprehensive electrochemical properties than as-east one; The cyclic. stability of the alloy with the thickness of 6 mm and the activation properties of the alloys with the thickness of 3 similar to 6 mm are improved after annealing. It is mainly owing to the great release of internal stress and the decrease of the segregation of Mn in the alloys. 展开更多
关键词 energy materials strip casting ANNEALING electrochemical property AB(5)-type hydrogen storage alloy rare earths
下载PDF
The electrochemical characteristics of AB_(4)-type rare earth-Mg-Ni-based superlattice structure hydrogen storage alloys for nickel metal hydride battery 被引量:7
8
作者 Wenfeng Wang Xiaoxue Liu +6 位作者 Lu Zhang Shuang Zhang Wei Guo Yumeng Zhao Hongming zhang Yuan Li Shumin Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2039-2048,共10页
Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is suppos... Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is supposed to have superior cycling stability and rate capability.Yet its preparation is hindered by the crucial requirement of temperature and the special composition which is close to the other superlattice structure.Here,we prepare rare earth-Mg-Ni-based alloy and study the phase transformation of alloys to make clear the formation of AB_(4)-type phase.It is found Pr_(5)Co_(19)-type phase is converted from Ce_(5)Co_(19)-type phase and shows good stability at higher temperature compared to the Ce_(5)Co_(19)-type phase in the range of 930-970℃.Afterwards,with further 5℃increasing,AB_(4)-type superlattice structure forms at a temperature of 975℃by consuming Pr_(5)Co_(19)-type phase.In contrast with A_(5)B_(19)-type alloy,AB_(4)-type alloy has superior rate capability owing to the dominant advantages of charge transfer and hydrogen diffusion.Besides,AB_(4)-type alloy shows long lifespan whose capacity retention rates are 89.2%at the 100;cycle and 82.8%at the 200;cycle,respectively.AB_(4)-type alloy delivers 1.53 wt.%hydrogen storage capacity at room temperature and exhibits higher plateau pressure than Pr_(5)Co_(19)-type alloy.The work provides novel AB_(4)-type alloy with preferable electrochemical performance as negative electrode material to inspire the development of nickel metal hydride batteries. 展开更多
关键词 Nickel metal hydride batteries hydrogen storage alloys AB_(4)-type superlattice structure Electrochemical performance Kinetics properties
下载PDF
Microstructure and electrochemical properties of LaNi_(4-x)FeMn_x (x=0-0.8) hydrogen storage alloys 被引量:4
9
作者 羊恒 陈云贵 +1 位作者 陶明大 吴朝玲 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第5期853-857,共5页
In order to reduce the cost of LaNi5 based hydrogen storage alloys, effect of substitution of Mn for Ni on structural and electrochemical properties of LaNi4-xFeMnx (x=0-0.8) hydrogen storage alloys was studied system... In order to reduce the cost of LaNi5 based hydrogen storage alloys, effect of substitution of Mn for Ni on structural and electrochemical properties of LaNi4-xFeMnx (x=0-0.8) hydrogen storage alloys was studied systematically. X-ray diffraction (XRD) and scanning electron microscope (SEM) showed that LaNi5 and La2Ni7 phases were invariably present in all alloy samples, and when x >= 0.4, (Fe, Ni) phase was observed. Electrochemical studies revealed that the discharge capacity reached a maximum value of 306.4 mAh/g when x=0.2 and the cycling stability decreased with the increase of x. With the increase of Mn content, hydrogen diffusion coefficient decreased, whereas high rate discharge-ability (HRD) and exchange current density first increased slowly when x <= 0.2 and then decreased markedly when x=0.8, indicating that electrochemical reaction on the surface of alloy electrodes had strong influence on kinetic property. 展开更多
关键词 hydrogen storage materials electrochemical properties Co-free AB(5)-type alloy rare earths
下载PDF
Crystal structure and hydrogen storage properties of(La,Ce)Ni_(5-x)M_x(M = Al, Fe, or Co) alloys 被引量:3
10
作者 Wan-liang Mi Zhao-sen Liu +2 位作者 Toru Kimura Atsunori Kamegawa Hai-liang Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第1期108-113,共6页
The effects of partial substitution of La by Ce and Ni by Al, Fe, or Co in LaNi_5-based alloys on hydrogen storage performance were systematically studied. All samples were prepared using vacuum arc melting in an argo... The effects of partial substitution of La by Ce and Ni by Al, Fe, or Co in LaNi_5-based alloys on hydrogen storage performance were systematically studied. All samples were prepared using vacuum arc melting in an argon atmosphere. The results showed that for LaNi_(5-x)M_x(M = Al, Fe, or Co) alloys, the lattice constants and unit cell volumes increased with an increasing amount of Al and Fe. On the other hand, these parameters decreased upon partial substitution of La by Ce. In addition, the lattice constant remained almost constant in the La_(0.6)Ce_(0.4)Ni_(5–x)Cox alloys regardless of the value of x(x = 0.3, 0.6, or 0.9), as Ce might enhance the homogeneity of the CaCu_5-type phase in Co-containing alloys. The hydrogen storage properties of the alloys were investigated using pressure, composition, and temperature isotherms. The experimental results showed that the plateau pressure decreased with an increasing content of Al, Fe, or Co, but it increased with Ce addition. Furthermore, the plateau pressures of all Co-containing alloys were almost identical upon substitution with Ce. Finally, the enthalpy(ΔH) and entropy(ΔS) values for all alloys were calculated using van't Hoff plots. The relationship between the lattice parameters and enthalpy changes for hydrogenation will be discussed. 展开更多
关键词 metal HYDRIDE LANI5 hydrogen storage alloyS partial substitution P-C-T curves thermodynamics
下载PDF
Electrochemical Properties of Strip Casting LPCNi_(3.55) Co_(0.75) Mn_(0.4) Al_(0.3) Hydrogen Storage Alloys 被引量:1
11
作者 吴朝玲 陈云贵 +3 位作者 李锋 唐定骧 李梦 涂铭旌 《Journal of Rare Earths》 SCIE EI CAS CSCD 2002年第5期517-521,共5页
LPCNi 3.55 Co 0.75 Mn 0.4 Al 0.3 hydrogen storage alloy was investigated, and the effects of thickness of its strip casting ingots(as cast) on the electrochemical performances were discussed. It was ... LPCNi 3.55 Co 0.75 Mn 0.4 Al 0.3 hydrogen storage alloy was investigated, and the effects of thickness of its strip casting ingots(as cast) on the electrochemical performances were discussed. It was found that the 0.2 C discharge capacity increased with the increase of the thickness (from 1 mm to 10 mm) of the ingots, mainly due to the enlargement of the unit cell volume; Among the thickness of the ingots in our study, 10 mm sample showed a better activation property; LPCNi 3.55 Co 0.75 Mn 0.4 Al 0.3 alloy with 10mm showed higher comprehensive properties than those with other thickness under 1C rate. 展开更多
关键词 rare earths strip casting electrochemical properties AB 5 type hydrogen storage alloys
下载PDF
EFFECT OF ANNEALING ON THE ELECTRODE PERFORMANCESOF ZrTi(MnVCoNi)_2 HYDROGEN STORAGE ALLOY
12
作者 X.G, Yang Q.A. Zhang +2 位作者 K. Y Shu YL. Du YQ. Lei and Q.D. Wang (Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China )W.K. Zhang(Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 3100l4, C 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第6期0-0,0-0+0-0,共6页
The annealing treatment was found to improve the cyclic stability but to degmde discharpe capacity, activation and high-rate discharpeability for the Ti-substituted AB2type alloy electrode. A larper polarization was f... The annealing treatment was found to improve the cyclic stability but to degmde discharpe capacity, activation and high-rate discharpeability for the Ti-substituted AB2type alloy electrode. A larper polarization was found in the annealed alloy because of its poor discharpe kinetics resulted hem the structural homogeneity. At larae discharpe cumnts, the hydmpen dchsion in the bulk of the alloy was mpaofed as the mte-determining step. Based on the P ressure-composition isotherm measurement, we concluded that the decrease in discharpeability of the annealed alloy is owing to the low and flat pressure plateau, as well as the large hysteresis, but the hydrgen stomge density almost remains unchangeable after annealing. 展开更多
关键词 AB_2 hydrogen storage alloy ANNEALING electrochemical property HOMOGENEITY P-C-T
下载PDF
CHARACTERISTICS OF METAL-HYDROGEN INTERACTION IN HYDROGEN STORAGE ALLOYS
13
作者 M.Morinaga and H. Yukawa Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期593-599,共7页
The electronic structures are calculated by the DV-Xa molecular orbital method employing small model clusters in order to clarify the roles of the hydride forming elements, A, (e.g., La, Zr Ti, Mg) and non-forming e... The electronic structures are calculated by the DV-Xa molecular orbital method employing small model clusters in order to clarify the roles of the hydride forming elements, A, (e.g., La, Zr Ti, Mg) and non-forming elements, B, (e.g., Ni, Mn, Fe) in hydrogen storage alloys. It is confirmed from this calculation that hydrogen interacts more strongly with hydride non-forming elements, B, than hydride forming elements, A, in agreement with our previous calculations. However,the B-H interaction is enhanced only when some A element exists in the neighborhood. Otherwise, such a B-H interaction never operates in the alloy. In this sense,the coexistence of A and B elements are essential in the constitution of hydrogen storage alloys. Also, it is shown that the A/B compositional ratio of hydrogen storage alloys is understood in terms of a simple parameter, 2Bo(A - B) / /Bo(A - A)+ Bo(B-B)], where the Bo(A-B), Bo(A-A) and the Bo(B-B) are the bond strengths between atoms given in the parentheses. 展开更多
关键词 electronic structure hydrogen storage alloy HYDRIDE LANI5 ZrMn2 MG2NI TiFe
下载PDF
Structure and electrochemical performance of hydrogen storage alloy La_(0.7)Mg_(0.3)Ni_(2.875)Co_(0.525)Mn_(0.1)-boron composite
14
作者 LIU Yi WANG Yijing +4 位作者 XIAO Lingling CAO Jiansheng JIAO Lifang FENG Yan YUAN Huatang 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期261-265,共5页
The structure and electrochemical characteristics of La_(0.7)Mg_(0.3)Ni_(2.875)Co_(0.525)Mn_(0.1)-boron composite was studied systematically.The AB_(3) type hydrogen storage alloys La_(0.7)Mg_(0.3)Ni_(2.875)Co_(0.525)... The structure and electrochemical characteristics of La_(0.7)Mg_(0.3)Ni_(2.875)Co_(0.525)Mn_(0.1)-boron composite was studied systematically.The AB_(3) type hydrogen storage alloys La_(0.7)Mg_(0.3)Ni_(2.875)Co_(0.525)Mn_(0.1) were successfully synthesized by means of inter-media alloy La_(2)Mg_(17).The alloys were composited with boron at different weight rate.From the XRD analyses,each alloy of this series is mainly composed of(La,Mg)Ni_(3) phase and the LaNi_(5) phase,and the phase abundance of each phase varies with the boron weight rate,moreover,after composition,the c and cell volumes of(La,Mg)Ni_(3) phase increase,and the LaNi_(5) phase keep the same,which indicate that the boron may enter(La,Mg)Ni_(3) phase.The electrochemical studies show that the maximum discharge capacity of the composites decreases,but the cycling life improved.And the high rate discharge ability and exchange impendence spectroscopy(EIS)of the AB_(3) alloys and its composite were also studied. 展开更多
关键词 AB_(3)type hydrogen storage alloys composite materials structure characteristics electrochemical performance
下载PDF
Effects of alloying side B on Ti-based AB_2 hydrogen storage alloys
15
作者 王家淳 于荣海 刘庆 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第5期485-492,共8页
Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickel-metal hyd... Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickel-metal hydride (Ni-MH) batteries in the near future. Alloying in side B is a major way to improve the performance of Ti-based AB2-type alloys. Based on recent studies, the effects of alloying elements in side B upon the performance of Ti-based AB2-type hydrogen storage alloys are systematically reviewed here. These performances are divided into two categories, namely PCI characteristics, including hydrogen storage capacity (HSC), plateau pressure (PP), pressure hysteresis (PH) and pressure plateau sloping (PPS), and electrochemical properties, including discharge capacity (DC), activation property (AP), cycling stability (CS) and high-rate dischargeability (HRD). Furthermore, the existing problems in these investigations and some suggestions for future research are proposed. 展开更多
关键词 Ti-based AB_2-type alloy hydrogen storage Ni-MH battery alloying element
下载PDF
Electronic Structure of Hydrogen Storage Compounds, LaNi_5 and Its Micro-Hydrogenated Compounds 被引量:1
16
作者 林玉芳 赵栋梁 +1 位作者 王新林 张羊换 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第4期455-459,共5页
The electronic structures of LaNi5 hydrogen storage alloys and its micro-hydrogenated compounds with two hydrogen atoms in the center of two octahedral interstices and two tetrahedral interstices, were investigated by... The electronic structures of LaNi5 hydrogen storage alloys and its micro-hydrogenated compounds with two hydrogen atoms in the center of two octahedral interstices and two tetrahedral interstices, were investigated by the first principles discrete variational method (DVM). The results of density of states and the difference of charge distribution clearly show that the s electrons of H mainly interact with the s electrons of hydride-non-forming element Ni, despite there being a larger affinity of La for hydrogen than that of Ni in pure metal-hydrogen system. From the cohesive energy of systems, we also found two systems have almost same stability with occupation of H atoms. 展开更多
关键词 hydrogen storage alloy LANI5 first principles rare earths
下载PDF
Microstructure and Hydrogen Absorption Pro-perties of Mg/MmNi_(5-x) (CoAlMn)_x Composite Prepared by Mechanical Alloying
17
作者 Zhu Wenhui Zhu Min +2 位作者 Che Xiaozhou Li Long Li Zuxin(Department of Mechano-ElectronicEngineering, South China University of Technology,Guangzhou 510641, China ) 《Journal of Rare Earths》 SCIE EI CAS CSCD 1999年第4期262-262,共1页
The microstructure ofthe Mg/MmNi5-x (CoAlMn )x composite hydrogen storage material preparedby the method of mechanical alloyingwas characterized by X-ray diffraction, SEM and particle size distribution analysis. By me... The microstructure ofthe Mg/MmNi5-x (CoAlMn )x composite hydrogen storage material preparedby the method of mechanical alloyingwas characterized by X-ray diffraction, SEM and particle size distribution analysis. By measuring PCTcurves, the hydrogen absorption properties of the composite was evaluated.The results show that nanocrystallinecomposite structure can be obtainedunder adequate ball milling condition. The reactive activation and hydrogen absorption capacity are improved compared with the sole MmNi5-x(CoAlMn)x alloy. The effect ofmagnesium on the microstructure andhydrogen absorption properties of thecomposite were also evaluated. 展开更多
关键词 Rare earths Mechanical alloying hydrogen storage alloys Nanocrystalline composite MmNi_(5-x)(CoAlMn)_x/Mg
下载PDF
高倍率AB_5型稀土贮氢合金的研究进展 被引量:10
18
作者 周增林 宋月清 +2 位作者 崔舜 杜军 康志君 《稀有金属》 EI CAS CSCD 北大核心 2004年第2期408-413,共6页
综述了AB5型稀土贮氢合金高倍率放电性能的影响因素。从合金成分、制备工艺、粒度控制以及表面改性等几个方面进行总结 ,并对贮氢合金高倍率放电机制等问题进行了讨论。开发低钴无钴系列合金、非化学计量比、形成双相合金、控制粒度分... 综述了AB5型稀土贮氢合金高倍率放电性能的影响因素。从合金成分、制备工艺、粒度控制以及表面改性等几个方面进行总结 ,并对贮氢合金高倍率放电机制等问题进行了讨论。开发低钴无钴系列合金、非化学计量比、形成双相合金、控制粒度分布以及表面改性处理是目前改善AB5型稀土贮氢合金高倍率放电性能的有效途径。 展开更多
关键词 AB5型贮氢合金 高倍率 稀土
下载PDF
硼对低钴AB_5型贮氢合金循环寿命的影响 被引量:7
19
作者 张羊换 陈梅艳 +3 位作者 王新林 王国清 祁焱 郭世海 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2005年第2期212-216,共5页
为了提高低钴 AB_5 型贮氢合金的电化学循环稳定性,在低钴 AB_5 型贮氢合金中加入微量的硼,用真空快淬工艺制备了稀土系低钴 AB_5型 MmNi_(3.8)Co_(0.4)Mn_(0.6)Al_(0.2)Bx_(x=0, 0.1, 0.2, 0.3, 0.4)贮氢合金,分析测试了铸态及快淬态... 为了提高低钴 AB_5 型贮氢合金的电化学循环稳定性,在低钴 AB_5 型贮氢合金中加入微量的硼,用真空快淬工艺制备了稀土系低钴 AB_5型 MmNi_(3.8)Co_(0.4)Mn_(0.6)Al_(0.2)Bx_(x=0, 0.1, 0.2, 0.3, 0.4)贮氢合金,分析测试了铸态及快淬态合金的电化学性能及微观结构,研究了硼对铸态及快淬态合金微观结构及循环寿命的影响。结果表明,硼能大幅度提高铸态及快淬态低钴 AB5型贮氢合金的电化学循环稳定性,但其作用机理是完全不同的。 展开更多
关键词 低钴AB5型贮氢合金 铸态及快淬态 循环寿命
下载PDF
高性能AB_5型贮氢合金的成分设计 被引量:21
20
作者 张羊换 王新林 +3 位作者 陈梅艳 李平 林玉芳 李蓉 《金属功能材料》 CAS 2002年第5期1-6,共6页
贮氢合金是MH -Ni电池技术的核心 ,而其化学成分是决定贮氢合金性能的主要因素。在分析MH -Ni电池对负极材料的性能要求及电极失效机理的基础上 ,详细讨论了AB5型贮氢合金的主要电化学性能与各种合金元素之间的关系 。
关键词 AB5型贮氢合金 化学成分 电化学性能 镍氢电池
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部