The tensile strength of CVD SiC fiber was remarkably improved by electrochemical surface treatment. SEM analyses reveal that AC current treatment could form a more compact and complete SiO2 layer than DC current on th...The tensile strength of CVD SiC fiber was remarkably improved by electrochemical surface treatment. SEM analyses reveal that AC current treatment could form a more compact and complete SiO2 layer than DC current on the surface of the SiC fiber, which was beneficial to the improvement of tensile strength. It was also verified that AC current was more effective for producing high performance SiC fiber with SiO2 surface layer than DC current. The frequency is a sensitive parameter for the process; but the signals of input current had relatively small effect on the tensile strength of SiC fiber. A further discussion for this phenomenon was completed. The proposed operational parameters are 0.3 A, 5 kHz of sine wave and 91 m/h of the receiving rate respectively.展开更多
An improved small-signal equivalent circuit of HBT concerning the AC current crowding effect is proposed in this paper. AC current crowding effect is modeled as a parallel RC circuit composed of Cbi and Rbi, with dist...An improved small-signal equivalent circuit of HBT concerning the AC current crowding effect is proposed in this paper. AC current crowding effect is modeled as a parallel RC circuit composed of Cbi and Rbi, with distributed base-collector junction capacitance also taken into account. The intrinsic portion is taken as a whole and extracted directly from the measured Sparameters in the whole frequency range of operation without any special test structures. An HBT device with a 2 × 20 μm^(2) emitter-area under three different biases were used to demonstrate the extraction and verify the accuracy of the equivalent circuit.展开更多
AC currents are automatically calibrated by two different thermal current converter(TCC)designs.The two designs are different in the used number of the thermal-elements(TEs).Consequently they differ in their output el...AC currents are automatically calibrated by two different thermal current converter(TCC)designs.The two designs are different in the used number of the thermal-elements(TEs).Consequently they differ in their output electro motive force(EMF).Studying the effect of changing the output EMF is done in this paper through calibrating AC currents.5 mA and 5 A are accurately calibrated at different frequencies 55 Hz,1 kHz and10 kHz by the two TCCs.A comparison is made between the results to evaluate the effect of the output EMF value on the accuracy and the uncertainty of the low and higher AC current calibration.A LabVIEW program is designed for this accurate automatic calibration to overcome the problems of the manual calibration on the thermal converters.展开更多
The plasma current is modulated with an alternating current (ac) component in a frequency range of 90 Hz - 900 Hz in the plateau discharge phase in the CT-6B tokamak. A plasma electric conductivity profile in a form...The plasma current is modulated with an alternating current (ac) component in a frequency range of 90 Hz - 900 Hz in the plateau discharge phase in the CT-6B tokamak. A plasma electric conductivity profile in a form of (1 - r^2/a^2)^α with a parameter α which is fitted with the experimental data, can be determined. The effects of magnetic shear in a tokamak field configuration on the current penetration are taken into account in the numerical simulation. The measurement method and obtained results are discussed.展开更多
The induced electricity of 110 kV transmission lines which cross the UHV AC transmission lines may threaten personal safety of the maintenance staff. In this paper, field measurement of the induced voltage and induced...The induced electricity of 110 kV transmission lines which cross the UHV AC transmission lines may threaten personal safety of the maintenance staff. In this paper, field measurement of the induced voltage and induced current on a 110 kV crossing line inside Jinhua in Zhejiang province is performed. The electrostatic induced voltage on the measured line is 12.24 kV. The power frequency electromagnetic field simulation model is established, and the calculation results are consistent with the measured. Influence factors analysis shows that the electrostatic induced voltage on the 110 kV line is 12.78 kV, the electromagnetic induced voltage is 12.3 V, the induced current through ground wire is less than 1A when the UHV lines operate at full load. The induced voltage and current decrease while the crossing distance increases. Parallel lines induction is much higher than crossing lines. The electromagnetic induced voltage after ground knife-switch shut down would exceed the human safety voltage 36 V while the crossing angle is less than 30?, so the temporary ground wire must be hanged to ensure safety of the maintenance staff.展开更多
This paper presents the comparison of various current control strategies employed for an interleaved power factor correction (PFC) boost converter for improving the power quality. The major control strategies discusse...This paper presents the comparison of various current control strategies employed for an interleaved power factor correction (PFC) boost converter for improving the power quality. The major control strategies discussed in this paper are: peak current control, average current control, hysteresis control, borderline current control and non-linear control. These strategies are implemented in MATLAB/SIMULINK and the performance of the proposed converter is compared under open loop and closed loop operation. From the results, the input current waveform was close to input voltage waveform implying improved power factor and reduced total harmonic distortion for nonlinear current control technique. Experimental results validate the proposed method.展开更多
With rapid economic development in China, demand for energy and transportation is growing. Due to the limitations of factors such as terrain and traffic, a large number of buried oil and gas pipelines are parallel to ...With rapid economic development in China, demand for energy and transportation is growing. Due to the limitations of factors such as terrain and traffic, a large number of buried oil and gas pipelines are parallel to high- voltage transmission lines and electrified railways over long distances. Alternating pipelines is very serious in laboratory experiments were current (AC) corrosion of such cases. In this work, carried out with an electrochemical method in a simulated soil solution at various AC current densities from 0 to 200 A]m2 and AC frequencies from 10 to 200 Hz. Experimental results indicated that with an increase in the AC current density, the corrosion po- tential of an X60 steel electrode shifted negatively, the anodic current density increased significantly, and the corrosion rate increased. Moreover, with an increase in the AC frequency, the corrosion potential of the X60 electrode shifted positively and the anodic current density decreased, which led to a decrease in the corrosion rate. Furthermore, the morphology of X60 electrodes indicated that uniform corrosion occurred at a low AC current density; while corrosion pits were found on the X60 electrode surface at a high AC current density, and deep corrosion pits seriously damaged the pipelines and might lead to leakage.展开更多
文摘The tensile strength of CVD SiC fiber was remarkably improved by electrochemical surface treatment. SEM analyses reveal that AC current treatment could form a more compact and complete SiO2 layer than DC current on the surface of the SiC fiber, which was beneficial to the improvement of tensile strength. It was also verified that AC current was more effective for producing high performance SiC fiber with SiO2 surface layer than DC current. The frequency is a sensitive parameter for the process; but the signals of input current had relatively small effect on the tensile strength of SiC fiber. A further discussion for this phenomenon was completed. The proposed operational parameters are 0.3 A, 5 kHz of sine wave and 91 m/h of the receiving rate respectively.
基金supported by the National Natural Science Foundation of China (Grant No. 61934006)。
文摘An improved small-signal equivalent circuit of HBT concerning the AC current crowding effect is proposed in this paper. AC current crowding effect is modeled as a parallel RC circuit composed of Cbi and Rbi, with distributed base-collector junction capacitance also taken into account. The intrinsic portion is taken as a whole and extracted directly from the measured Sparameters in the whole frequency range of operation without any special test structures. An HBT device with a 2 × 20 μm^(2) emitter-area under three different biases were used to demonstrate the extraction and verify the accuracy of the equivalent circuit.
文摘AC currents are automatically calibrated by two different thermal current converter(TCC)designs.The two designs are different in the used number of the thermal-elements(TEs).Consequently they differ in their output electro motive force(EMF).Studying the effect of changing the output EMF is done in this paper through calibrating AC currents.5 mA and 5 A are accurately calibrated at different frequencies 55 Hz,1 kHz and10 kHz by the two TCCs.A comparison is made between the results to evaluate the effect of the output EMF value on the accuracy and the uncertainty of the low and higher AC current calibration.A LabVIEW program is designed for this accurate automatic calibration to overcome the problems of the manual calibration on the thermal converters.
基金The project supported by the National Natural Science Foundation of China (Nos. 19789502 and 19889506)
文摘The plasma current is modulated with an alternating current (ac) component in a frequency range of 90 Hz - 900 Hz in the plateau discharge phase in the CT-6B tokamak. A plasma electric conductivity profile in a form of (1 - r^2/a^2)^α with a parameter α which is fitted with the experimental data, can be determined. The effects of magnetic shear in a tokamak field configuration on the current penetration are taken into account in the numerical simulation. The measurement method and obtained results are discussed.
文摘The induced electricity of 110 kV transmission lines which cross the UHV AC transmission lines may threaten personal safety of the maintenance staff. In this paper, field measurement of the induced voltage and induced current on a 110 kV crossing line inside Jinhua in Zhejiang province is performed. The electrostatic induced voltage on the measured line is 12.24 kV. The power frequency electromagnetic field simulation model is established, and the calculation results are consistent with the measured. Influence factors analysis shows that the electrostatic induced voltage on the 110 kV line is 12.78 kV, the electromagnetic induced voltage is 12.3 V, the induced current through ground wire is less than 1A when the UHV lines operate at full load. The induced voltage and current decrease while the crossing distance increases. Parallel lines induction is much higher than crossing lines. The electromagnetic induced voltage after ground knife-switch shut down would exceed the human safety voltage 36 V while the crossing angle is less than 30?, so the temporary ground wire must be hanged to ensure safety of the maintenance staff.
文摘This paper presents the comparison of various current control strategies employed for an interleaved power factor correction (PFC) boost converter for improving the power quality. The major control strategies discussed in this paper are: peak current control, average current control, hysteresis control, borderline current control and non-linear control. These strategies are implemented in MATLAB/SIMULINK and the performance of the proposed converter is compared under open loop and closed loop operation. From the results, the input current waveform was close to input voltage waveform implying improved power factor and reduced total harmonic distortion for nonlinear current control technique. Experimental results validate the proposed method.
基金sponsored by the Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period(Grant No.2011BAK06B01)
文摘With rapid economic development in China, demand for energy and transportation is growing. Due to the limitations of factors such as terrain and traffic, a large number of buried oil and gas pipelines are parallel to high- voltage transmission lines and electrified railways over long distances. Alternating pipelines is very serious in laboratory experiments were current (AC) corrosion of such cases. In this work, carried out with an electrochemical method in a simulated soil solution at various AC current densities from 0 to 200 A]m2 and AC frequencies from 10 to 200 Hz. Experimental results indicated that with an increase in the AC current density, the corrosion po- tential of an X60 steel electrode shifted negatively, the anodic current density increased significantly, and the corrosion rate increased. Moreover, with an increase in the AC frequency, the corrosion potential of the X60 electrode shifted positively and the anodic current density decreased, which led to a decrease in the corrosion rate. Furthermore, the morphology of X60 electrodes indicated that uniform corrosion occurred at a low AC current density; while corrosion pits were found on the X60 electrode surface at a high AC current density, and deep corrosion pits seriously damaged the pipelines and might lead to leakage.