An atmospheric-pressure carbon dioxide(CO_2) plasma jet(CPJ) produced by alternating current driven non-thermal arc plasma torch is presented.The discharge features of CPJ and their non-linear behavior are analyzed ba...An atmospheric-pressure carbon dioxide(CO_2) plasma jet(CPJ) produced by alternating current driven non-thermal arc plasma torch is presented.The discharge features of CPJ and their non-linear behavior are analyzed based on the temporal evolution of voltage and current.With the increase of gas flowrate,the quantities of the current and voltage spikes increase in an operation cycle of power supply.The spatial gas temperature distribution is obtained by the gray value method,which basically agrees well with that of determined by the diatomic molecule of OH fitting method in experimental errors.展开更多
This report shows how starting from classic electric circuits embodying commonly electric components we have reached semi-complicated circuits embodying the same components that analyzing the signal characteristics re...This report shows how starting from classic electric circuits embodying commonly electric components we have reached semi-complicated circuits embodying the same components that analyzing the signal characteristics requires a Computer Algebra System. Our approach distinguishes itself from the electrical engineers’ (EE) approach that relies on utilizing commercially available software. Our approach step-by-step shows how Kirchhoff’s rules are applied conducive to the needed circuit information. It is shown for the case at hand the characteristic information is a set of coupled differential equations and that with the help of Mathematica numeric solutions are sought. Our report paves the research road for unlimited creative similar circuits with any degree of complications. Occasionally, by tweaking the circuits we have addressed the “what if” scenarios widening the scope of the investigation. Justification of the accuracy of our analysis for the generalized circuits is cross-checked by arranging the components symmetrizing the circuit leading to an intuitively predictable reasonable result. Mathematica codes are embedded assisting the interested reader in producing and extending our results.展开更多
针对从周围环境中收集能量的微型发电机输出功率和电压非常小,无法直接应用的问题。文中设计了一种超低输入电压、低功耗且高效的接口电路。该接口电路包含两级,第一级是无源级和仅由一个有源二极管组成的第二级。为降低有源二极管的功...针对从周围环境中收集能量的微型发电机输出功率和电压非常小,无法直接应用的问题。文中设计了一种超低输入电压、低功耗且高效的接口电路。该接口电路包含两级,第一级是无源级和仅由一个有源二极管组成的第二级。为降低有源二极管的功耗,采用一个工作在亚阈值区的衬底输入比较器用来驱动MOS开关。设计采用TSMC 0.18μm标准CMOS工艺,使用Cadence Spectre在室温的条件下进行仿真。结果表明,在输入电压为500 m V(100 Hz),负载电阻为50 kΩ时整流器的电压转换率为97.7%,能量转换率为91.3%。整流器能够在输入电压振幅为320 m V以上实现高效整流。展开更多
文章基于可编程SNS型约瑟夫森结阵,研究了一种交流量子电压驱动方法。该方法根据结阵的I-V特性,通过控制各段结阵的偏置状态及组合方式,实现交流量子电压的合成。采用电压源驱动方式,将节点电流分析法应用在偏置电路参数计算中,设计了...文章基于可编程SNS型约瑟夫森结阵,研究了一种交流量子电压驱动方法。该方法根据结阵的I-V特性,通过控制各段结阵的偏置状态及组合方式,实现交流量子电压的合成。采用电压源驱动方式,将节点电流分析法应用在偏置电路参数计算中,设计了偏置模块,搭建了交流约瑟夫森量子电压驱动系统。实验结果表明,该系统偏置电流的建立时间为1.27μs,稳定性优于6 n A/min,输出电流分辨率可达0.01 m A,可以合成频率为50 Hz、每周期40个采样点、有效值为1 V的交流约瑟夫森量子电压信号。展开更多
文摘An atmospheric-pressure carbon dioxide(CO_2) plasma jet(CPJ) produced by alternating current driven non-thermal arc plasma torch is presented.The discharge features of CPJ and their non-linear behavior are analyzed based on the temporal evolution of voltage and current.With the increase of gas flowrate,the quantities of the current and voltage spikes increase in an operation cycle of power supply.The spatial gas temperature distribution is obtained by the gray value method,which basically agrees well with that of determined by the diatomic molecule of OH fitting method in experimental errors.
文摘This report shows how starting from classic electric circuits embodying commonly electric components we have reached semi-complicated circuits embodying the same components that analyzing the signal characteristics requires a Computer Algebra System. Our approach distinguishes itself from the electrical engineers’ (EE) approach that relies on utilizing commercially available software. Our approach step-by-step shows how Kirchhoff’s rules are applied conducive to the needed circuit information. It is shown for the case at hand the characteristic information is a set of coupled differential equations and that with the help of Mathematica numeric solutions are sought. Our report paves the research road for unlimited creative similar circuits with any degree of complications. Occasionally, by tweaking the circuits we have addressed the “what if” scenarios widening the scope of the investigation. Justification of the accuracy of our analysis for the generalized circuits is cross-checked by arranging the components symmetrizing the circuit leading to an intuitively predictable reasonable result. Mathematica codes are embedded assisting the interested reader in producing and extending our results.
文摘针对从周围环境中收集能量的微型发电机输出功率和电压非常小,无法直接应用的问题。文中设计了一种超低输入电压、低功耗且高效的接口电路。该接口电路包含两级,第一级是无源级和仅由一个有源二极管组成的第二级。为降低有源二极管的功耗,采用一个工作在亚阈值区的衬底输入比较器用来驱动MOS开关。设计采用TSMC 0.18μm标准CMOS工艺,使用Cadence Spectre在室温的条件下进行仿真。结果表明,在输入电压为500 m V(100 Hz),负载电阻为50 kΩ时整流器的电压转换率为97.7%,能量转换率为91.3%。整流器能够在输入电压振幅为320 m V以上实现高效整流。
文摘文章基于可编程SNS型约瑟夫森结阵,研究了一种交流量子电压驱动方法。该方法根据结阵的I-V特性,通过控制各段结阵的偏置状态及组合方式,实现交流量子电压的合成。采用电压源驱动方式,将节点电流分析法应用在偏置电路参数计算中,设计了偏置模块,搭建了交流约瑟夫森量子电压驱动系统。实验结果表明,该系统偏置电流的建立时间为1.27μs,稳定性优于6 n A/min,输出电流分辨率可达0.01 m A,可以合成频率为50 Hz、每周期40个采样点、有效值为1 V的交流约瑟夫森量子电压信号。