The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic d...The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.展开更多
By comprehension of earthquake focal mechanism solutions and the data of in-situ stress measurements, the tectonic stress field in Shanxi region has been summarized, which indicate that the stress state in this region...By comprehension of earthquake focal mechanism solutions and the data of in-situ stress measurements, the tectonic stress field in Shanxi region has been summarized, which indicate that the stress state in this region is different from that of its eastern surrounding regions. The next, by fitting the measured data, the boundary forces that influenced the distribution of the stress field in this region has been studied using inversion method. The inversion results showed the following messages: the effect of the boundary force between the blocks is the main determinative factor for the recent tectonic stress field in Shanxi and the regional material and its property is a secondary factor; the horizontal main stress of tectonic stress field in Shanxi region is consistent with the stretch of fault basins.展开更多
Runyang Suspension Bridge (RSB) with the main span of 1490 m is the longest bridge in China and the third longest one in the world. In this bridge the rigid central buckle is employed for the first time in the mid-spa...Runyang Suspension Bridge (RSB) with the main span of 1490 m is the longest bridge in China and the third longest one in the world. In this bridge the rigid central buckle is employed for the first time in the mid-span of the suspension bridge in China. For such a super-long-span bridge, the traditional finite element (FE) modeling technique and stress analysis methods obviously cannot satisfy the needs of conducting accurate stress analysis on the central buckle. In this paper, the submodel method is in- troduced and for the first time used in analyzing the stresses of the central buckle. After an accurate FE submodel of the central buckle was specially established according to the analysis results from the whole FE model, the connection technique between the two-scale FE models was realized and the ac- curate stresses of the central buckle under various vehicle load cases were then conducted based on the submodel method. The calculation results were testified to be accurate and reliable by the field measurements, which show the efficiency and reliability of the submodel method on analyzing the mechanical condition of the central buckle of long-span suspension bridges. Finally, the working be- havior and mechanical characteristics of the central buckle of the RSB under vehicle loads were ana- lyzed based on the calculation and measurement results. The results obtained in this paper can provide theoretic references for analyzing and designing the rigid central buckle in long-span suspension bridges in future.展开更多
Based on significant improvements in engineering materials,three advanced engineering measures have been proposed-super anchor cables,high-strength concrete anti-fault caverns,and grouting modification using high-stre...Based on significant improvements in engineering materials,three advanced engineering measures have been proposed-super anchor cables,high-strength concrete anti-fault caverns,and grouting modification using high-strength concrete-to resist fault dislocation in the surrounding rock near tunnels crossing active strike-slip faults.Moreover,single-or multiple-joint advanced engineering measures form the local rock mass-anti-fault(LRAF)method.A numerical method was used to investigate the influence of LRAF methods on the stress and displacement fields of the surrounding rock,and the anti-fault effect was evaluated.Finally,the mechanism of action of the anchor cable was verified using a three-dimensional numerical model.The numerical results indicated that the anchor cable and grouting modification reduced the displacement gradient of the local surrounding rock near the tunnels crossing fault.Furthermore,anchor cable and grouting modifications changed the stress field of the rock mass in the modified area.The tensile stress field of the rock mass in the modified anchor cable area was converted into a compressive stress field.The stress field in the modified grouting area changed from shear stress in the fault slip direction to tensile stress in the axial tunnel direction.The anti-fault cavern resisted the dislocation displacement and reduced the maximum dislocation magnitude,displacement gradient,and shear stress.Among the three advanced engineering measures,the anchor cable was the core of the three advanced engineering measures.An anchor cable,combined with other LRAF measures,can form an artificial safety island at the cross-fault position of the rock mass to protect the tunnel.The research results provide a new supporting idea for the surrounding rock of tunnels crossing active strike-slip faults.展开更多
基金supported by the Sinoprobe Deep Exploration in China(SinoProbe-07)research funds of the Institute of Geomechanics,Chinese Academy of Geological Sciences(Grant No.DZLXJK201105)National Basic Research Program of China(973 Program)(Grant No.2008CB425702)
文摘The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.
文摘By comprehension of earthquake focal mechanism solutions and the data of in-situ stress measurements, the tectonic stress field in Shanxi region has been summarized, which indicate that the stress state in this region is different from that of its eastern surrounding regions. The next, by fitting the measured data, the boundary forces that influenced the distribution of the stress field in this region has been studied using inversion method. The inversion results showed the following messages: the effect of the boundary force between the blocks is the main determinative factor for the recent tectonic stress field in Shanxi and the regional material and its property is a secondary factor; the horizontal main stress of tectonic stress field in Shanxi region is consistent with the stretch of fault basins.
基金Supported by the National High Technology Research and Development Program ("863" Project) (Grant No. 2006AA04Z416)the Key Project of the National Natural Science Foundation of China (Grant No. 50538020)+1 种基金the National Natural Science Foundation of China for Young Scholars (Grant No. 50608017) the Ph.D. Pro-grams Foundation of Ministry of Education of China (Grant No. 200802861012)
文摘Runyang Suspension Bridge (RSB) with the main span of 1490 m is the longest bridge in China and the third longest one in the world. In this bridge the rigid central buckle is employed for the first time in the mid-span of the suspension bridge in China. For such a super-long-span bridge, the traditional finite element (FE) modeling technique and stress analysis methods obviously cannot satisfy the needs of conducting accurate stress analysis on the central buckle. In this paper, the submodel method is in- troduced and for the first time used in analyzing the stresses of the central buckle. After an accurate FE submodel of the central buckle was specially established according to the analysis results from the whole FE model, the connection technique between the two-scale FE models was realized and the ac- curate stresses of the central buckle under various vehicle load cases were then conducted based on the submodel method. The calculation results were testified to be accurate and reliable by the field measurements, which show the efficiency and reliability of the submodel method on analyzing the mechanical condition of the central buckle of long-span suspension bridges. Finally, the working be- havior and mechanical characteristics of the central buckle of the RSB under vehicle loads were ana- lyzed based on the calculation and measurement results. The results obtained in this paper can provide theoretic references for analyzing and designing the rigid central buckle in long-span suspension bridges in future.
基金supported by the National Natural Science Foundation of China(Grant No.41941018)Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20200040)+1 种基金Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.ZDBS-LY-DQC022)Knowledge Innovation Program of Wuhan-Basic Research(No.2022010801010160).
文摘Based on significant improvements in engineering materials,three advanced engineering measures have been proposed-super anchor cables,high-strength concrete anti-fault caverns,and grouting modification using high-strength concrete-to resist fault dislocation in the surrounding rock near tunnels crossing active strike-slip faults.Moreover,single-or multiple-joint advanced engineering measures form the local rock mass-anti-fault(LRAF)method.A numerical method was used to investigate the influence of LRAF methods on the stress and displacement fields of the surrounding rock,and the anti-fault effect was evaluated.Finally,the mechanism of action of the anchor cable was verified using a three-dimensional numerical model.The numerical results indicated that the anchor cable and grouting modification reduced the displacement gradient of the local surrounding rock near the tunnels crossing fault.Furthermore,anchor cable and grouting modifications changed the stress field of the rock mass in the modified area.The tensile stress field of the rock mass in the modified anchor cable area was converted into a compressive stress field.The stress field in the modified grouting area changed from shear stress in the fault slip direction to tensile stress in the axial tunnel direction.The anti-fault cavern resisted the dislocation displacement and reduced the maximum dislocation magnitude,displacement gradient,and shear stress.Among the three advanced engineering measures,the anchor cable was the core of the three advanced engineering measures.An anchor cable,combined with other LRAF measures,can form an artificial safety island at the cross-fault position of the rock mass to protect the tunnel.The research results provide a new supporting idea for the surrounding rock of tunnels crossing active strike-slip faults.