It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of sing...It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.展开更多
In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line select...In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.展开更多
With the rapid development of modern distribution network and the access of distributed generation,the network structure is becoming increasingly complex.Frequent single-phase break faults have seriously affected equi...With the rapid development of modern distribution network and the access of distributed generation,the network structure is becoming increasingly complex.Frequent single-phase break faults have seriously affected equipment and personal safety and stable operation of the power system.However,with the development and application of the composite neutral grounding modes,the protection of single-phase break fault is facing new challenges.This paper proposes a protection method of single-phase break fault for distribution network considering the influence of neutral grounding modes.The characteristics of neutral voltage and sequence current are analyzed under normal operation and single-phase break fault with different grounding modes.Following this,the protection criterion based on neutral voltage and sequence current variation is constructed.The protection method of singlephase break fault for distribution network is proposed,which is applicable for various neutral grounding modes.Theoretical analysis and simulation results show that the protection method is less affected by system asymmetry,fault location and load distribution.The method has higher sensitivity,reliability and adaptability.展开更多
To address the problems of wind power abandonment and the stoppage of electricity transmission caused by a short circuit in a power line of a doubly-fed induction generator(DFIG) based wind farm, this paper proposes a...To address the problems of wind power abandonment and the stoppage of electricity transmission caused by a short circuit in a power line of a doubly-fed induction generator(DFIG) based wind farm, this paper proposes an intelligent location method for a single-phase grounding fault based on a multiple random forests(multi-RF) algorithm. First, the simulation model is built, and the fundamental amplitudes of the zerosequence currents are extracted by a fast Fourier transform(FFT) to construct the feature set. Then, the random forest classification algorithm is applied to establish the fault section locator. The model is resampled on the basis of the bootstrap method to generate multiple sample subsets, which are used to establish multiple classification and regression tree(CART) classifiers. The CART classifiers use the mean decrease in the node impurity as the feature importance,which is used to mine the relationship between features and fault sections. Subsequently, a fault section is identified by voting on the test results for each classifier. Finally, a multi-RF regression fault locator is built to output the predicted fault distance. Experimental results with PSCAD/EMTDC software show that the proposed method can overcome the shortcomings of a single RF and has the advantage of locating a short hybrid overhead/cable line with multiple branches. Compared with support vector machines(SVMs)and previously reported methods, the proposed method can meet the location accuracy and efficiency requirements of a DFIG-based wind farm better.展开更多
The arc-suppression coil(ASC)in parallel low resistance(LR)multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR ground...The arc-suppression coil(ASC)in parallel low resistance(LR)multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR grounding wind farm.If the fault disappears before LR is put into the system,it is judged as an instantaneous fault;while the fault does not disappear after LR is put into the system,it is judged as a permanent fault;the single-phase grounding fault(SLG)protection criterion based on zerosequence power variation is proposed to identify the instantaneous-permanent fault.Firstly,the distribution characteristic of zero-sequence voltage(ZSV)and zero-sequence current(ZSC)are analyzed after SLGfault occurs in multi-mode grounding.Then,according to the characteristics that zero-sequence power variation of non-fault collector line is small,while the zero-sequence power variation of fault collector line can reflect the active power component of fault resistance,the protection criterion based on zero-sequence power variation is constructed.The theoretical analysis and simulation results show that the protection criterion can distinguish the property of fault only by using the single terminal information,which has high reliability.展开更多
Accurate fault area localization is a challenging problem in resonant grounding systems(RGSs).Accordingly,this paper proposes a novel two-stage localization method for single-phase earth faults in RGSs.Firstly,a fault...Accurate fault area localization is a challenging problem in resonant grounding systems(RGSs).Accordingly,this paper proposes a novel two-stage localization method for single-phase earth faults in RGSs.Firstly,a faulty feeder identification algorithm based on a Bayesian classifier is proposed.Three characteristic parameters of the RGS(the energy ratio,impedance factor,and energy spectrum entropy)are calculated based on the zero-sequence current(ZSC)of each feeder using wavelet packet transformations.Then,the values of three parameters are sent to a pre-trained Bayesian classifier to recognize the exact fault mode.With this result,the faulty feeder can be finally identified.To find the exact fault area on the faulty feeder,a localization method based on the similarity comparison of dominant frequency-band waveforms is proposed in an RGS equipped with feeder terminal units(FTUs).The FTUs can provide the information on the ZSC at their locations.Through wavelet-packet transformation,ZSC dominant frequency-band waveforms can be obtained at all FTU points.Similarities of the waveforms of characteristics at all FTU points are calculated and compared.The neighboring FTU points with the maximum diversity are the faulty sections finally determined.The proposed method exhibits higher accuracy in both faulty feeder identification and fault area localization compared to the previous methods.Finally,the effectiveness of the proposed method is validated by comparing simulation and experimental results.展开更多
文摘It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.
文摘In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.
基金supported by the National Natural Science Foundation of China(NO.51877018).
文摘With the rapid development of modern distribution network and the access of distributed generation,the network structure is becoming increasingly complex.Frequent single-phase break faults have seriously affected equipment and personal safety and stable operation of the power system.However,with the development and application of the composite neutral grounding modes,the protection of single-phase break fault is facing new challenges.This paper proposes a protection method of single-phase break fault for distribution network considering the influence of neutral grounding modes.The characteristics of neutral voltage and sequence current are analyzed under normal operation and single-phase break fault with different grounding modes.Following this,the protection criterion based on neutral voltage and sequence current variation is constructed.The protection method of singlephase break fault for distribution network is proposed,which is applicable for various neutral grounding modes.Theoretical analysis and simulation results show that the protection method is less affected by system asymmetry,fault location and load distribution.The method has higher sensitivity,reliability and adaptability.
基金supported in part by the National Natural Science Foundation of China (No. 51677072)。
文摘To address the problems of wind power abandonment and the stoppage of electricity transmission caused by a short circuit in a power line of a doubly-fed induction generator(DFIG) based wind farm, this paper proposes an intelligent location method for a single-phase grounding fault based on a multiple random forests(multi-RF) algorithm. First, the simulation model is built, and the fundamental amplitudes of the zerosequence currents are extracted by a fast Fourier transform(FFT) to construct the feature set. Then, the random forest classification algorithm is applied to establish the fault section locator. The model is resampled on the basis of the bootstrap method to generate multiple sample subsets, which are used to establish multiple classification and regression tree(CART) classifiers. The CART classifiers use the mean decrease in the node impurity as the feature importance,which is used to mine the relationship between features and fault sections. Subsequently, a fault section is identified by voting on the test results for each classifier. Finally, a multi-RF regression fault locator is built to output the predicted fault distance. Experimental results with PSCAD/EMTDC software show that the proposed method can overcome the shortcomings of a single RF and has the advantage of locating a short hybrid overhead/cable line with multiple branches. Compared with support vector machines(SVMs)and previously reported methods, the proposed method can meet the location accuracy and efficiency requirements of a DFIG-based wind farm better.
基金This paper is supported in part by the National Natural Science Foundations of China,and the Major Science and Technology Projects in Yunnan Province under Grant Nos.51667010,51807085,and 202002AF080001.
文摘The arc-suppression coil(ASC)in parallel low resistance(LR)multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR grounding wind farm.If the fault disappears before LR is put into the system,it is judged as an instantaneous fault;while the fault does not disappear after LR is put into the system,it is judged as a permanent fault;the single-phase grounding fault(SLG)protection criterion based on zerosequence power variation is proposed to identify the instantaneous-permanent fault.Firstly,the distribution characteristic of zero-sequence voltage(ZSV)and zero-sequence current(ZSC)are analyzed after SLGfault occurs in multi-mode grounding.Then,according to the characteristics that zero-sequence power variation of non-fault collector line is small,while the zero-sequence power variation of fault collector line can reflect the active power component of fault resistance,the protection criterion based on zero-sequence power variation is constructed.The theoretical analysis and simulation results show that the protection criterion can distinguish the property of fault only by using the single terminal information,which has high reliability.
文摘Accurate fault area localization is a challenging problem in resonant grounding systems(RGSs).Accordingly,this paper proposes a novel two-stage localization method for single-phase earth faults in RGSs.Firstly,a faulty feeder identification algorithm based on a Bayesian classifier is proposed.Three characteristic parameters of the RGS(the energy ratio,impedance factor,and energy spectrum entropy)are calculated based on the zero-sequence current(ZSC)of each feeder using wavelet packet transformations.Then,the values of three parameters are sent to a pre-trained Bayesian classifier to recognize the exact fault mode.With this result,the faulty feeder can be finally identified.To find the exact fault area on the faulty feeder,a localization method based on the similarity comparison of dominant frequency-band waveforms is proposed in an RGS equipped with feeder terminal units(FTUs).The FTUs can provide the information on the ZSC at their locations.Through wavelet-packet transformation,ZSC dominant frequency-band waveforms can be obtained at all FTU points.Similarities of the waveforms of characteristics at all FTU points are calculated and compared.The neighboring FTU points with the maximum diversity are the faulty sections finally determined.The proposed method exhibits higher accuracy in both faulty feeder identification and fault area localization compared to the previous methods.Finally,the effectiveness of the proposed method is validated by comparing simulation and experimental results.