Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of...Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.展开更多
The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/D...The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.展开更多
The increasing flexibility of active distribution systems(ADSs)coupled with the high penetration of renewable distributed generators(RDGs)leads to the increase of the complexity.It is of practical significance to achi...The increasing flexibility of active distribution systems(ADSs)coupled with the high penetration of renewable distributed generators(RDGs)leads to the increase of the complexity.It is of practical significance to achieve the largest amount of RDG penetration in ADSs and maintain the optimal operation.This study establishes an alternating current(AC)/direct current(DC)hybrid ADS model that considers the dynamic thermal rating,soft open point,and distribution network reconfiguration(DNR).Moreover,it transforms the optimal dispatching into a second-order cone programming problem.Considering the different control time scales of dispatchable resources,the following two-stage dispatching framework is proposed.d dispatch uses hourly input data with the goal(1)The day-ahea of minimizing the grid loss and RDG dropout.It obtains the optimal 24-hour schedule to determine the dispatching plans for DNR and the energy storage system.(2)The intraday dispatch uses 15-min input data for 1-hour rolling-plan dispatch but only executes the first 15 min of dispatching.To eliminate error between the actual operation and dispatching plan,the first 15 min is divided into three 5-min step-by-step executions.The goal of each step is to trace the tie-line power of the intraday rolling-plan dispatch to the greatest extent at the minimum cost.The measured data are used as feedback input for the rolling-plan dispatch after each step is executed.A case study shows that the comprehensive cooperative ADS model can release the line capacity,reduce losses,and improve the penetration rate of RDGs.Further,the two-stage dispatching framework can handle source-load fluctuations and enhance system stability.展开更多
The upscaling requirements of energy transition highlight the urgent need for ramping up renewables and boosting system efficiencies.However,the stochastic nature of excessive renewable energy resources has challenged...The upscaling requirements of energy transition highlight the urgent need for ramping up renewables and boosting system efficiencies.However,the stochastic nature of excessive renewable energy resources has challenged stable and efficient operation of the power system.Battery energy storage systems(BESSs)have been identified as critical to mitigate random fluctuations,unnecessary green energy curtailment and load shedding with rapid response and flexible connection.On the other hand,an AC/DC hybrid distribution system can offer merged benefits in both AC and DC subsystems without additional losses during AC/DC power conversion.Therefore,configuring BESSs on an AC/DC distribution system is wellpositioned to meet challenges brought by carbon reductions in an efficient way.A bi-level optimization model of BESS capacity allocation for AC/DC hybrid distribution systems,considering the flexibility of voltage source converters(VSCs)and power conversion systems(PCSs),has been established in this paper to address the techno-economic issues that hindered wide implementation.The large-scale nonlinear programming problem has been solved utilizing a genetic algorithm combined with second-order cone programming.Rationality and effectiveness of the model have been verified by setting different scenarios through case studies.Simulation results have demonstrated the coordinated operation of BESS and AC/DC hybrid systems can effectively suppress voltage fluctuations and improve the cost-benefit of BESSs from a life cycle angle.展开更多
Hybrid AC/DC distribution networks are promising candidates for future applications due to their rapid advancement in power electronics technology.They use interface converters(IFCs)to link DC and AC distribution netw...Hybrid AC/DC distribution networks are promising candidates for future applications due to their rapid advancement in power electronics technology.They use interface converters(IFCs)to link DC and AC distribution networks.However,the networks possess drawbacks with AC voltage and frequency offsets when transferring from grid-tied to islanding modes.To address these problems,this paper proposes a simple but effective strategy based on the reverse droop method.Initially,the power balance equation of the distribution system is derived,which reveals that the cause of voltage and frequency offsets is the mismatch between the IFC output power and the rated load power.Then,the reverse droop control is introduced into the IFC controller.By using a voltage-active power/frequency-reactive power(U-P/f-Q)reverse droop loop,the IFC output power enables adaptive tracking of the rated load power.Therefore,the AC voltage offset and frequency offset are suppressed during the transfer process of operational modes.In addition,the universal parameter design method is discussed based on the stability limitations of the control system and the voltage quality requirements of AC critical loads.Finally,simulation and experimental results clearly validate the proposed control strategy and parameter design method.展开更多
In the context of evolving energy needs and environmental concerns,efficient management of distributed energy resources within microgrids has gained prominence.This paper addresses the optimization of power flow manag...In the context of evolving energy needs and environmental concerns,efficient management of distributed energy resources within microgrids has gained prominence.This paper addresses the optimization of power flow management in a hybrid AC/DC microgrid through an energy management system driven by particle swarm optimization.Unlike traditional approaches that focus solely on active power distribution,our energy management system optimizes both active and reactive power allocation among sources.By leveraging 24-hour-ahead forecasting data encompassing load predictions,tariff rates and weather conditions,our strategy ensures an economically and environmentally optimized microgrid operation.Our proposed energy management system has dual objectives:minimizing costs and reducing greenhouse gas emissions.Through optimized operation of polluting sources and efficient utilization of the energy storage system,our approach achieved significant cost savings of~15%compared with the genetic algorithm coun-terpart.This was largely attributed to the streamlined operation of the gas turbine system,which reduced fuel consumption and associated expenses.Moreover,particle swarm optimization maintained the efficiency of the gas turbine by operating at~80%of its nominal power,effectively lowering greenhouse gas emissions.The effectiveness of our proposed strategy is validated through simu-lations conducted using the MATLAB®software environment.展开更多
In a hybrid AC/DC medium voltage distribution network, distributed generations(DGs), energy storage systems(ESSs), and the voltage source converters(VSCs)between AC and DC lines, have the ability to regulate node volt...In a hybrid AC/DC medium voltage distribution network, distributed generations(DGs), energy storage systems(ESSs), and the voltage source converters(VSCs)between AC and DC lines, have the ability to regulate node voltages in real-time. However, the voltage regulation abilities of above devices are limited by their ratings. And the voltage regulation efficiencies of these devices are also different. Besides, due to high r/x ratio, node voltages are influenced by both real and reactive power. In order to achieve the coordinated voltage regulation in a hybrid AC/DC distribution network, a priority-based real-time control strategy is proposed based on the voltage control effect of real and reactive power adjustment. The equivalence of real and reactive power adjustment on voltage control is considered in control area partition optimization, in which regulation efficiency and capability are taken as objectives.In order to accommodate more DGs, the coordination of controllable devices is achieved according to voltage sensitivities. Simulations studies are performed to verify the proposed method.展开更多
In a cyber-physical power system, active distribution network(ADN) facilitates the energy control through hierarchical and distributed control system(HDCS). Various researches have dedicated to develop the control str...In a cyber-physical power system, active distribution network(ADN) facilitates the energy control through hierarchical and distributed control system(HDCS). Various researches have dedicated to develop the control strategies of primary devices of ADN. However, an ADN demonstration project shows that the information transmission of HDCS may cause time delay and response lag, and little model can describe both the ADN primary device and HDCS as a cyber-physical system(CPS). In this paper, a hybrid system based CPS model is proposed to describe ADN primary devices, control information flow, and HDCS. Using the CPS model, the energy process of primary devices and the information process of HDCS are optimized by model predictive control(MPC) methodology to seamlessly integrate the energy flow and the information flow. The case study demonstrates that the proposed CPS model can accurately reflect main features of HDCS, and the control technique can effectively achieve the operation targets on primary devices despite the fact that HDCS brings adverse effects to control process.展开更多
Driven by the improvement of the smart grid,the active distribution network(ADN)has attracted much attention due to its characteristic of active management.By making full use of electricity price signals for optimal s...Driven by the improvement of the smart grid,the active distribution network(ADN)has attracted much attention due to its characteristic of active management.By making full use of electricity price signals for optimal scheduling,the total cost of the ADN can be reduced.However,the optimal dayahead scheduling problem is challenging since the future electricity price is unknown.Moreover,in ADN,some schedulable variables are continuous while some schedulable variables are discrete,which increases the difficulty of determining the optimal scheduling scheme.In this paper,the day-ahead scheduling problem of the ADN is formulated as a Markov decision process(MDP)with continuous-discrete hybrid action space.Then,an algorithm based on multi-agent hybrid reinforcement learning(HRL)is proposed to obtain the optimal scheduling scheme.The proposed algorithm adopts the structure of centralized training and decentralized execution,and different methods are applied to determine the selection policy of continuous scheduling variables and discrete scheduling variables.The simulation experiment results demonstrate the effectiveness of the algorithm.展开更多
This paper presents performance analysis on hybrid AC/DC microgrid networks for residential home cluster. The design of the proposed microgrid includes comprehensive types of Distributed Generators (DGs) as hybrid pow...This paper presents performance analysis on hybrid AC/DC microgrid networks for residential home cluster. The design of the proposed microgrid includes comprehensive types of Distributed Generators (DGs) as hybrid power sources (wind, Photovoltaic (PV) solar cell, battery, fuel cell). Details about each DG dynamic modeling are presented and discussed. The customers in home cluster can be connected in both of the operating modes: islanded to the microgrid or connected to utility grid. Each DG has appended control system with its modeling that will be discussed to control DG performance. The wind turbine will be controlled by AC control system within three sub-control systems: 1) speed regulator and pitch control, 2) rotor side converter control, and 3) grid side converter control. The AC control structure is based on PLL, current regulator and voltage booster converter with using of photovoltaic Voltage Source Converter (VSC) and inverters to connect to the grid. The DC control system is mainly based on Maximum Power Point Tracking (MPPT) controller and boost converter connected to the PV array block and in order to control the system. The case study is used to analyze the performance of the proposed microgrid. The buses voltages, active power and reactive power responses are presented in both of grid-connected and islanded modes. In addition, the power factor, Total Harmonic Distortion (THD) and modulation index are calculated.展开更多
电力电子化的直流配电网存在低惯性问题,不利于系统稳定运行。混合储能设备可向电网提供虚拟惯性,但不同类型的储能之间存在功率协调问题,并且储能的荷电状态(state of charge, SOC)对虚拟惯性的调节也有约束作用。针对上述问题,提出了...电力电子化的直流配电网存在低惯性问题,不利于系统稳定运行。混合储能设备可向电网提供虚拟惯性,但不同类型的储能之间存在功率协调问题,并且储能的荷电状态(state of charge, SOC)对虚拟惯性的调节也有约束作用。针对上述问题,提出了一种自适应时间常数的分频控制策略,时间常数根据混合储能系统(hybridenergy storage system, HESS)的SOC而动态调整以改变功率分配。首先,通过分析储能SOC与虚拟惯性的关系,并考虑储能充放电极限问题,研究兼顾SOC、电压变化率以及电压幅值的自适应虚拟惯性控制策略,提高系统惯性。然后,建立控制系统的小信号模型,分析虚拟惯性系数对系统的影响。最后,基于Matlab/Simulink搭建直流配电网仿真模型,验证了所提控制策略能合理分配HESS功率,提高超级电容器利用率,改善直流电压与功率稳定性。展开更多
The concept of a flexible power electronics substation(FPES)was first applied in the Zhangbei DC distribution network demonstration project.As a multi-port power electronics transformer(PET)with different AC and DC vo...The concept of a flexible power electronics substation(FPES)was first applied in the Zhangbei DC distribution network demonstration project.As a multi-port power electronics transformer(PET)with different AC and DC voltage levels,the FPES has adopted a novel topology integrating modular multilevel converter(MMC)and four-winding medium frequency transformer(FWMFT)based multiport DC-DC converter,which can significantly reduce capacitance in each sub-module(SM)of a MMC and also save space and cost.In this paper,in order to accelerate speed of electromagnetic transient(EMT)simulations of FPES based hybrid AC/DC distribution systems,an averaged-value model(AVM)is proposed for efficient and accurate representation of FPES.Assume that all SM capacitor voltages are perfectly balanced in the MMC,then the MMC behavior can be modeled using controlled voltage sources based on modulation voltages from control systems.In terms of the averaged current transfer characteristics among the windings of the FWMFT,we consider that all multiport DC-DC converters are controlled with the same dynamics,a lumped averaged model using controlled current and voltage sources has been developed for these four-port DC-DC converters connected to the upper or lower arms of the MMC.The presented FPES AVM model has been tested and validated by comparison with a detailed IGBT-based EMT model.Results show that the AVM is significantly more efficient while maintaining its accuracy in an EMT simulation.展开更多
文摘Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.
基金supported by National Key Research and Development Program of China (2016YFB0900500,2017YFB0903100)the State Grid Science and Technology Project (SGRI-DL-F1-51-011)
文摘The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.
基金supported by Universiti Sains Malaysia through Research University Team(RUTeam)Grant Scheme(No.1001/PELECT/8580011)。
文摘The increasing flexibility of active distribution systems(ADSs)coupled with the high penetration of renewable distributed generators(RDGs)leads to the increase of the complexity.It is of practical significance to achieve the largest amount of RDG penetration in ADSs and maintain the optimal operation.This study establishes an alternating current(AC)/direct current(DC)hybrid ADS model that considers the dynamic thermal rating,soft open point,and distribution network reconfiguration(DNR).Moreover,it transforms the optimal dispatching into a second-order cone programming problem.Considering the different control time scales of dispatchable resources,the following two-stage dispatching framework is proposed.d dispatch uses hourly input data with the goal(1)The day-ahea of minimizing the grid loss and RDG dropout.It obtains the optimal 24-hour schedule to determine the dispatching plans for DNR and the energy storage system.(2)The intraday dispatch uses 15-min input data for 1-hour rolling-plan dispatch but only executes the first 15 min of dispatching.To eliminate error between the actual operation and dispatching plan,the first 15 min is divided into three 5-min step-by-step executions.The goal of each step is to trace the tie-line power of the intraday rolling-plan dispatch to the greatest extent at the minimum cost.The measured data are used as feedback input for the rolling-plan dispatch after each step is executed.A case study shows that the comprehensive cooperative ADS model can release the line capacity,reduce losses,and improve the penetration rate of RDGs.Further,the two-stage dispatching framework can handle source-load fluctuations and enhance system stability.
基金supported in part by the National Natural Science Foundation of China(No.51777134)in part by a joint project of NSFC of China and EPSRC of UK(No.52061635103 and EP/T021969/1).
文摘The upscaling requirements of energy transition highlight the urgent need for ramping up renewables and boosting system efficiencies.However,the stochastic nature of excessive renewable energy resources has challenged stable and efficient operation of the power system.Battery energy storage systems(BESSs)have been identified as critical to mitigate random fluctuations,unnecessary green energy curtailment and load shedding with rapid response and flexible connection.On the other hand,an AC/DC hybrid distribution system can offer merged benefits in both AC and DC subsystems without additional losses during AC/DC power conversion.Therefore,configuring BESSs on an AC/DC distribution system is wellpositioned to meet challenges brought by carbon reductions in an efficient way.A bi-level optimization model of BESS capacity allocation for AC/DC hybrid distribution systems,considering the flexibility of voltage source converters(VSCs)and power conversion systems(PCSs),has been established in this paper to address the techno-economic issues that hindered wide implementation.The large-scale nonlinear programming problem has been solved utilizing a genetic algorithm combined with second-order cone programming.Rationality and effectiveness of the model have been verified by setting different scenarios through case studies.Simulation results have demonstrated the coordinated operation of BESS and AC/DC hybrid systems can effectively suppress voltage fluctuations and improve the cost-benefit of BESSs from a life cycle angle.
基金This work was supported by the National Key R&D Program of China(2018YFB0904700).
文摘Hybrid AC/DC distribution networks are promising candidates for future applications due to their rapid advancement in power electronics technology.They use interface converters(IFCs)to link DC and AC distribution networks.However,the networks possess drawbacks with AC voltage and frequency offsets when transferring from grid-tied to islanding modes.To address these problems,this paper proposes a simple but effective strategy based on the reverse droop method.Initially,the power balance equation of the distribution system is derived,which reveals that the cause of voltage and frequency offsets is the mismatch between the IFC output power and the rated load power.Then,the reverse droop control is introduced into the IFC controller.By using a voltage-active power/frequency-reactive power(U-P/f-Q)reverse droop loop,the IFC output power enables adaptive tracking of the rated load power.Therefore,the AC voltage offset and frequency offset are suppressed during the transfer process of operational modes.In addition,the universal parameter design method is discussed based on the stability limitations of the control system and the voltage quality requirements of AC critical loads.Finally,simulation and experimental results clearly validate the proposed control strategy and parameter design method.
文摘In the context of evolving energy needs and environmental concerns,efficient management of distributed energy resources within microgrids has gained prominence.This paper addresses the optimization of power flow management in a hybrid AC/DC microgrid through an energy management system driven by particle swarm optimization.Unlike traditional approaches that focus solely on active power distribution,our energy management system optimizes both active and reactive power allocation among sources.By leveraging 24-hour-ahead forecasting data encompassing load predictions,tariff rates and weather conditions,our strategy ensures an economically and environmentally optimized microgrid operation.Our proposed energy management system has dual objectives:minimizing costs and reducing greenhouse gas emissions.Through optimized operation of polluting sources and efficient utilization of the energy storage system,our approach achieved significant cost savings of~15%compared with the genetic algorithm coun-terpart.This was largely attributed to the streamlined operation of the gas turbine system,which reduced fuel consumption and associated expenses.Moreover,particle swarm optimization maintained the efficiency of the gas turbine by operating at~80%of its nominal power,effectively lowering greenhouse gas emissions.The effectiveness of our proposed strategy is validated through simu-lations conducted using the MATLAB®software environment.
文摘In a hybrid AC/DC medium voltage distribution network, distributed generations(DGs), energy storage systems(ESSs), and the voltage source converters(VSCs)between AC and DC lines, have the ability to regulate node voltages in real-time. However, the voltage regulation abilities of above devices are limited by their ratings. And the voltage regulation efficiencies of these devices are also different. Besides, due to high r/x ratio, node voltages are influenced by both real and reactive power. In order to achieve the coordinated voltage regulation in a hybrid AC/DC distribution network, a priority-based real-time control strategy is proposed based on the voltage control effect of real and reactive power adjustment. The equivalence of real and reactive power adjustment on voltage control is considered in control area partition optimization, in which regulation efficiency and capability are taken as objectives.In order to accommodate more DGs, the coordination of controllable devices is achieved according to voltage sensitivities. Simulations studies are performed to verify the proposed method.
基金supported by the National Natural Science Foundation of China (No.51677116)the Science and Technology Program of State Grid Jiangsu Electric Power Company (No.J20170124)。
文摘In a cyber-physical power system, active distribution network(ADN) facilitates the energy control through hierarchical and distributed control system(HDCS). Various researches have dedicated to develop the control strategies of primary devices of ADN. However, an ADN demonstration project shows that the information transmission of HDCS may cause time delay and response lag, and little model can describe both the ADN primary device and HDCS as a cyber-physical system(CPS). In this paper, a hybrid system based CPS model is proposed to describe ADN primary devices, control information flow, and HDCS. Using the CPS model, the energy process of primary devices and the information process of HDCS are optimized by model predictive control(MPC) methodology to seamlessly integrate the energy flow and the information flow. The case study demonstrates that the proposed CPS model can accurately reflect main features of HDCS, and the control technique can effectively achieve the operation targets on primary devices despite the fact that HDCS brings adverse effects to control process.
基金This work was supported by the National Key R&D Program of China(2018AAA0101400)the National Natural Science Foundation of China(62173251,61921004,U1713209)the Natural Science Foundation of Jiangsu Province of China(BK20202006).
文摘Driven by the improvement of the smart grid,the active distribution network(ADN)has attracted much attention due to its characteristic of active management.By making full use of electricity price signals for optimal scheduling,the total cost of the ADN can be reduced.However,the optimal dayahead scheduling problem is challenging since the future electricity price is unknown.Moreover,in ADN,some schedulable variables are continuous while some schedulable variables are discrete,which increases the difficulty of determining the optimal scheduling scheme.In this paper,the day-ahead scheduling problem of the ADN is formulated as a Markov decision process(MDP)with continuous-discrete hybrid action space.Then,an algorithm based on multi-agent hybrid reinforcement learning(HRL)is proposed to obtain the optimal scheduling scheme.The proposed algorithm adopts the structure of centralized training and decentralized execution,and different methods are applied to determine the selection policy of continuous scheduling variables and discrete scheduling variables.The simulation experiment results demonstrate the effectiveness of the algorithm.
文摘This paper presents performance analysis on hybrid AC/DC microgrid networks for residential home cluster. The design of the proposed microgrid includes comprehensive types of Distributed Generators (DGs) as hybrid power sources (wind, Photovoltaic (PV) solar cell, battery, fuel cell). Details about each DG dynamic modeling are presented and discussed. The customers in home cluster can be connected in both of the operating modes: islanded to the microgrid or connected to utility grid. Each DG has appended control system with its modeling that will be discussed to control DG performance. The wind turbine will be controlled by AC control system within three sub-control systems: 1) speed regulator and pitch control, 2) rotor side converter control, and 3) grid side converter control. The AC control structure is based on PLL, current regulator and voltage booster converter with using of photovoltaic Voltage Source Converter (VSC) and inverters to connect to the grid. The DC control system is mainly based on Maximum Power Point Tracking (MPPT) controller and boost converter connected to the PV array block and in order to control the system. The case study is used to analyze the performance of the proposed microgrid. The buses voltages, active power and reactive power responses are presented in both of grid-connected and islanded modes. In addition, the power factor, Total Harmonic Distortion (THD) and modulation index are calculated.
基金This work was supported in part by the National Nature Science Foundation of China(51977142)。
文摘The concept of a flexible power electronics substation(FPES)was first applied in the Zhangbei DC distribution network demonstration project.As a multi-port power electronics transformer(PET)with different AC and DC voltage levels,the FPES has adopted a novel topology integrating modular multilevel converter(MMC)and four-winding medium frequency transformer(FWMFT)based multiport DC-DC converter,which can significantly reduce capacitance in each sub-module(SM)of a MMC and also save space and cost.In this paper,in order to accelerate speed of electromagnetic transient(EMT)simulations of FPES based hybrid AC/DC distribution systems,an averaged-value model(AVM)is proposed for efficient and accurate representation of FPES.Assume that all SM capacitor voltages are perfectly balanced in the MMC,then the MMC behavior can be modeled using controlled voltage sources based on modulation voltages from control systems.In terms of the averaged current transfer characteristics among the windings of the FWMFT,we consider that all multiport DC-DC converters are controlled with the same dynamics,a lumped averaged model using controlled current and voltage sources has been developed for these four-port DC-DC converters connected to the upper or lower arms of the MMC.The presented FPES AVM model has been tested and validated by comparison with a detailed IGBT-based EMT model.Results show that the AVM is significantly more efficient while maintaining its accuracy in an EMT simulation.