The hybrid cascaded high-voltage direct current(HVDC)transmission system has various operation modes,and some operation modes have sharply increasing requirements for protection rapidity,while the traditional pilot di...The hybrid cascaded high-voltage direct current(HVDC)transmission system has various operation modes,and some operation modes have sharply increasing requirements for protection rapidity,while the traditional pilot differential protection(PDP)has poor rapidity,and even refuses to operate when faults occur on the DC line.Therefore,a novel pilot protection scheme based on traveling wave characteristics is proposed.First,the adaptability of the traditional PDP applied in engineering is analyzed for different operation modes.Then,the expressions of the forward traveling wave(FTW)and backward traveling wave(BTW)on the rectifier side and the inverter side are derived for different fault locations.From the theoretical derivation,the difference between the BTW and FTW on the rectifier side is less than zero,and the same is true on the inverter side.However,in the event of an external fault of DC line,the difference between the BTW and FTW at nearfault terminal protection installation point is greater than zero.Therefore,by summing over the product of the difference between BTW and FTW of the rectifier side and that of the inverter side,the fault identification criterion is constructed.The simulation results show that the proposed pilot protection scheme can quickly and reliably identify the short-circuit faults of DC line in different operation modes.展开更多
为提高风电场交直流混合输电并网的系统性能,提出一种更加灵活的电压源换流器高压直流(voltage source converter based high voltage direct current,VSC-HVDC)控制策略。对于风电场侧电压源换流器,设计了一种新的交流电压–功角控制...为提高风电场交直流混合输电并网的系统性能,提出一种更加灵活的电压源换流器高压直流(voltage source converter based high voltage direct current,VSC-HVDC)控制策略。对于风电场侧电压源换流器,设计了一种新的交流电压–功角控制方法。对于交直流混合输电模式,该方法通过调节风电场交流母线电压与电压源换流器输出电压间的功角来实现定有功功率控制。对于纯柔性直流输电模式,风电场交流母线电压自动被调节为具有恒幅恒频的交流电压,实现了对波动风电的同步输送。该方法中输电模式的变化无需切换控制;另外,通过附加电流高通滤波器增强了对系统谐振的阻尼作用。对电网侧电压源换流器,采用一种新的直接电流矢量控制,使直流电压稳定在参考值上。运用PSCAD/EMTDC仿真软件对分别接入笼型感应发电机(squirrel cage induction generator,SCIG)风电场和双馈感应发电机(doubly fed induction generator,DFIG)风电场的交直流混合输电系统建模仿真。一系列运行条件下的仿真结果验证了控制方法的有效性与可行性。展开更多
基金Project supported by Funds for Innovative Research Groups of China (51021005), National Basic Research Program of China (973 Program) (2009CB724504), National Natural Science Foundation of China(50707036).
基金supported in part by the National Natural Science Foundation of China(No.51977183)。
文摘The hybrid cascaded high-voltage direct current(HVDC)transmission system has various operation modes,and some operation modes have sharply increasing requirements for protection rapidity,while the traditional pilot differential protection(PDP)has poor rapidity,and even refuses to operate when faults occur on the DC line.Therefore,a novel pilot protection scheme based on traveling wave characteristics is proposed.First,the adaptability of the traditional PDP applied in engineering is analyzed for different operation modes.Then,the expressions of the forward traveling wave(FTW)and backward traveling wave(BTW)on the rectifier side and the inverter side are derived for different fault locations.From the theoretical derivation,the difference between the BTW and FTW on the rectifier side is less than zero,and the same is true on the inverter side.However,in the event of an external fault of DC line,the difference between the BTW and FTW at nearfault terminal protection installation point is greater than zero.Therefore,by summing over the product of the difference between BTW and FTW of the rectifier side and that of the inverter side,the fault identification criterion is constructed.The simulation results show that the proposed pilot protection scheme can quickly and reliably identify the short-circuit faults of DC line in different operation modes.
文摘为提高风电场交直流混合输电并网的系统性能,提出一种更加灵活的电压源换流器高压直流(voltage source converter based high voltage direct current,VSC-HVDC)控制策略。对于风电场侧电压源换流器,设计了一种新的交流电压–功角控制方法。对于交直流混合输电模式,该方法通过调节风电场交流母线电压与电压源换流器输出电压间的功角来实现定有功功率控制。对于纯柔性直流输电模式,风电场交流母线电压自动被调节为具有恒幅恒频的交流电压,实现了对波动风电的同步输送。该方法中输电模式的变化无需切换控制;另外,通过附加电流高通滤波器增强了对系统谐振的阻尼作用。对电网侧电压源换流器,采用一种新的直接电流矢量控制,使直流电压稳定在参考值上。运用PSCAD/EMTDC仿真软件对分别接入笼型感应发电机(squirrel cage induction generator,SCIG)风电场和双馈感应发电机(doubly fed induction generator,DFIG)风电场的交直流混合输电系统建模仿真。一系列运行条件下的仿真结果验证了控制方法的有效性与可行性。