基于电压源换流器高压直流输电(voltage source converter based HVDC,VSC-HVDC)的直流系统存在与交流线路并联运行的情况。交直流系统之间相互切换的运行工况复杂,且切换过程存在切换依据难以确定、切换冲击大以及通信延时等问题。为...基于电压源换流器高压直流输电(voltage source converter based HVDC,VSC-HVDC)的直流系统存在与交流线路并联运行的情况。交直流系统之间相互切换的运行工况复杂,且切换过程存在切换依据难以确定、切换冲击大以及通信延时等问题。为解决该问题,在分析VSC-HVDC工作原理、数学模型及其控制策略的基础上,提出了一种大型风电场经VSC-HVDC交直流并联系统并网的运行控制策略,该策略在不改变换流站控制方式的情况下,可实现交直流并联系统运行方式的无缝切换。基于MATLAB/Simulink仿真软件,建立了系统仿真模型,对交直流并联系统稳态运行及动态切换过程进行了仿真分析。仿真结果表明,所提出的控制策略能够较好地实现交直流并联系统有功功率的精确分配和运行方式的无缝切换,算法简单,可靠性高。展开更多
为提高系统运行稳定性,高补偿度串补装置广泛投入使用,但线路故障后潜供电流存在高幅值的低频分量,潜供电弧难以自熄。针对此问题,基于交直流混联输电线路,研究了不同布置方式下串补度对潜供电流与恢复电压幅值影响,提出了一种固定串补(...为提高系统运行稳定性,高补偿度串补装置广泛投入使用,但线路故障后潜供电流存在高幅值的低频分量,潜供电弧难以自熄。针对此问题,基于交直流混联输电线路,研究了不同布置方式下串补度对潜供电流与恢复电压幅值影响,提出了一种固定串补(fixed series compensation,FSC)和可控串补(thyristor controlled series compensation,TCSC)混合复用抑制潜供电弧的方法。此外,为满足线路对高补偿度的需求,设计FSC和TCSC混合复用串补度最佳配置方案。结果表明,交直流混联线路采用串补度40%的双平台分散布置方式,潜供电流与恢复电压幅值达到最小,燃弧时间最短。高补偿度串补线路TCSC采用串补度10%、20%的配置方案更利于熄弧,提高重合闸成功率。展开更多
特高压(ultra high voltage,UHV)交流与直流线路同廊道运行时带电作业区域电压高、场强大,交直流混合电场比单一电场更为复杂。为确保作业人员安全,结合实际±1100 kV直流和1000 kV交流线路,建立了包含输电导线、杆塔及带电作业人...特高压(ultra high voltage,UHV)交流与直流线路同廊道运行时带电作业区域电压高、场强大,交直流混合电场比单一电场更为复杂。为确保作业人员安全,结合实际±1100 kV直流和1000 kV交流线路,建立了包含输电导线、杆塔及带电作业人员的三维计算模型,通过分析开展带电作业时人员的体表混合场强、电位转移电流及暂态能量,对作业人员安全防护进行研究。结果表明:随着作业人员不断接近直流线路,体表场强受交流线路影响越明显,最高可使作业人员体表场强增大约9%,达到1920 kV/m;交流线路的存在将导致电位转移电流增长约7%,但对暂态能量影响较小。通过对特高压线路不停电检修所减少的碳排放量进行进一步计算,验证了特高压带电作业对减少碳排放具有促进作用。展开更多
文摘基于电压源换流器高压直流输电(voltage source converter based HVDC,VSC-HVDC)的直流系统存在与交流线路并联运行的情况。交直流系统之间相互切换的运行工况复杂,且切换过程存在切换依据难以确定、切换冲击大以及通信延时等问题。为解决该问题,在分析VSC-HVDC工作原理、数学模型及其控制策略的基础上,提出了一种大型风电场经VSC-HVDC交直流并联系统并网的运行控制策略,该策略在不改变换流站控制方式的情况下,可实现交直流并联系统运行方式的无缝切换。基于MATLAB/Simulink仿真软件,建立了系统仿真模型,对交直流并联系统稳态运行及动态切换过程进行了仿真分析。仿真结果表明,所提出的控制策略能够较好地实现交直流并联系统有功功率的精确分配和运行方式的无缝切换,算法简单,可靠性高。
文摘为提高系统运行稳定性,高补偿度串补装置广泛投入使用,但线路故障后潜供电流存在高幅值的低频分量,潜供电弧难以自熄。针对此问题,基于交直流混联输电线路,研究了不同布置方式下串补度对潜供电流与恢复电压幅值影响,提出了一种固定串补(fixed series compensation,FSC)和可控串补(thyristor controlled series compensation,TCSC)混合复用抑制潜供电弧的方法。此外,为满足线路对高补偿度的需求,设计FSC和TCSC混合复用串补度最佳配置方案。结果表明,交直流混联线路采用串补度40%的双平台分散布置方式,潜供电流与恢复电压幅值达到最小,燃弧时间最短。高补偿度串补线路TCSC采用串补度10%、20%的配置方案更利于熄弧,提高重合闸成功率。
文摘为保障低压配电线路检修作业安全,有必要研究低压配线在停运检修状态下的感应电压和电流。采用EMTP建模仿真,分别计算了上海地区4个超/特高压交、直流输电工程线路下方平行架设的380 V低压配线上的感应电压、电流,对影响感应的因素进行了分析,并设计研发了低压配电线路感应电压消除装置。仿真结果表明,超/特高压交、直流线路在其下方停运的380 V配线上产生较大的感应电压和电流,感应电压最高可达30~70 k V。试验结果表明,低压配线感应电压消除装置在线路停运时将其两端接地,能有效消除配电线路上的感应电压。