A perturbation method is used to study effective response of nonlinear Kerr composites, which are subject to the constitutive relation of electric displacement and electric field, Dα=εαE+xα|E|^2E. Under the ext...A perturbation method is used to study effective response of nonlinear Kerr composites, which are subject to the constitutive relation of electric displacement and electric field, Dα=εαE+xα|E|^2E. Under the external AG and DC electric field Eapp = Eα(1 + sinωt), the effective nonlinear responses and local potentials are induced by the cubic nonlinearity of Kerr materials at all harmonics. As an example in three dimensions, we have investigated this kind of nonlinear composites with spherical inclusions embedded in a host. At all harmonic frequencies, the potentials in inclusion and host regions are derived. Furthermore, the formulae of the effective linear and nonlinear responses are given in the dilute Iimit.展开更多
Under the external AC and DC electric field, the effective response of nonlinear spherical coated composites, which obey the constitutive relation of electric displaeement and electric field, is investigated in the di...Under the external AC and DC electric field, the effective response of nonlinear spherical coated composites, which obey the constitutive relation of electric displaeement and electric field, is investigated in the dilute limit by using the perturbation method. The local potentials in inclusion and host regions are derived at all harmonics. Moreover, the formulae of the effective linear and nonlinear responses are given in the dilute limit.展开更多
For higher concentration of inclusions, an effective medium approximation (EMA) method is used to investigate the bulk effective response of weakly nonlinear composites, which are subject to the constitutive relatio...For higher concentration of inclusions, an effective medium approximation (EMA) method is used to investigate the bulk effective response of weakly nonlinear composites, which are subject to the constitutive relation of electric displacement and electric field, Dα = εαE +Xα|E|^2 E. As an example of three dimensions, under the external AC and DC electric fields Eapp = Eα(1 + sinωt), we have derived the general effective nonh'near response of composites by the EMA method for higher concentration of spherical inclusions. Furthermore, the effective nonlinear responses at harmonics are predicted.展开更多
The conversion of electromagnetic energy into heat by nanomagnets has the potential to be a powerful, non-invasive technique for cancer therapy by hyperthermia and hyperthermia-based drug release, while temperature co...The conversion of electromagnetic energy into heat by nanomagnets has the potential to be a powerful, non-invasive technique for cancer therapy by hyperthermia and hyperthermia-based drug release, while temperature controllability and targeted heating are challenges to developing applications of such magnetic inductive hyperthermia. This study was designed to control the hyperthermia position and area using a combination of alternating current (AC) and a static magnetic field. MnZn ferrite (MZF) nanoparticles which exhibited excellent hyperthermia properties were first prepared and characterized as an inductive heating mediator. We built model static magnetic fields simply using a pair of permanent magnets and studied the static magnetic field distributions by measurements and numerical simulations. The influence of the transverse static magnetic fields on hyperthermia properties was then investigated on MZF magnetic fluid, gel phantoms and SMMC-7721 cells in vitro. The results showed a static magnetic field can inhibit the temperature rise of MZF nanoparticles in an AC magnetic field. But in the uneven static magnetic field formed by a magnet pair with repelling poles face-to-face, the heating area can be restricted in a central low static field; meanwhile the side effects of hyperthermia can be reduced by a surrounding high static field. As a result we can position the hyperthermia area, protect the non-therapeutic area, and reduce the side effects lust by using a well-designed combination of AC and static field.展开更多
Research and development of high-temperature superconducting(HTS)apparatus are ongoing in the world with the great progress on the HTS tapes in recent years.The most attractive applications require the HTS tapes to pe...Research and development of high-temperature superconducting(HTS)apparatus are ongoing in the world with the great progress on the HTS tapes in recent years.The most attractive applications require the HTS tapes to perform well upon the application of an alternative current(AC)and/or an AC magnetic field.The electromagnetic properties of the HTS tapes including anisotropy,uniformity,alternative current(AC losses)and stability as well as mechanical characteristics are important fundamental parameters for these applications.This paper summarizes and focuses on several typical measurement principles and methods as well as apparatuses of those characteristic parameters except for their stability developed in past several years in China.展开更多
文摘A perturbation method is used to study effective response of nonlinear Kerr composites, which are subject to the constitutive relation of electric displacement and electric field, Dα=εαE+xα|E|^2E. Under the external AG and DC electric field Eapp = Eα(1 + sinωt), the effective nonlinear responses and local potentials are induced by the cubic nonlinearity of Kerr materials at all harmonics. As an example in three dimensions, we have investigated this kind of nonlinear composites with spherical inclusions embedded in a host. At all harmonic frequencies, the potentials in inclusion and host regions are derived. Furthermore, the formulae of the effective linear and nonlinear responses are given in the dilute Iimit.
文摘Under the external AC and DC electric field, the effective response of nonlinear spherical coated composites, which obey the constitutive relation of electric displaeement and electric field, is investigated in the dilute limit by using the perturbation method. The local potentials in inclusion and host regions are derived at all harmonics. Moreover, the formulae of the effective linear and nonlinear responses are given in the dilute limit.
基金The project supported by National Natural Science Foundation of China under Grant Nos.40476026 and 10374026
文摘For higher concentration of inclusions, an effective medium approximation (EMA) method is used to investigate the bulk effective response of weakly nonlinear composites, which are subject to the constitutive relation of electric displacement and electric field, Dα = εαE +Xα|E|^2 E. As an example of three dimensions, under the external AC and DC electric fields Eapp = Eα(1 + sinωt), we have derived the general effective nonh'near response of composites by the EMA method for higher concentration of spherical inclusions. Furthermore, the effective nonlinear responses at harmonics are predicted.
文摘The conversion of electromagnetic energy into heat by nanomagnets has the potential to be a powerful, non-invasive technique for cancer therapy by hyperthermia and hyperthermia-based drug release, while temperature controllability and targeted heating are challenges to developing applications of such magnetic inductive hyperthermia. This study was designed to control the hyperthermia position and area using a combination of alternating current (AC) and a static magnetic field. MnZn ferrite (MZF) nanoparticles which exhibited excellent hyperthermia properties were first prepared and characterized as an inductive heating mediator. We built model static magnetic fields simply using a pair of permanent magnets and studied the static magnetic field distributions by measurements and numerical simulations. The influence of the transverse static magnetic fields on hyperthermia properties was then investigated on MZF magnetic fluid, gel phantoms and SMMC-7721 cells in vitro. The results showed a static magnetic field can inhibit the temperature rise of MZF nanoparticles in an AC magnetic field. But in the uneven static magnetic field formed by a magnet pair with repelling poles face-to-face, the heating area can be restricted in a central low static field; meanwhile the side effects of hyperthermia can be reduced by a surrounding high static field. As a result we can position the hyperthermia area, protect the non-therapeutic area, and reduce the side effects lust by using a well-designed combination of AC and static field.
基金supported by Beijing Education Commissions(Grant No.GJ2013009)the National Natural Science Foundation of China(Grant No.51077051)
文摘Research and development of high-temperature superconducting(HTS)apparatus are ongoing in the world with the great progress on the HTS tapes in recent years.The most attractive applications require the HTS tapes to perform well upon the application of an alternative current(AC)and/or an AC magnetic field.The electromagnetic properties of the HTS tapes including anisotropy,uniformity,alternative current(AC losses)and stability as well as mechanical characteristics are important fundamental parameters for these applications.This paper summarizes and focuses on several typical measurement principles and methods as well as apparatuses of those characteristic parameters except for their stability developed in past several years in China.