期刊文献+
共找到333篇文章
< 1 2 17 >
每页显示 20 50 100
Effect of Discharge Parameters on Properties of Diamond-Like Carbon Films Prepared by Dual-Frequency Capacitively Coupled Plasma Source 被引量:1
1
作者 杨磊 辛煜 +2 位作者 徐海鹏 虞一青 宁兆元 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第1期53-58,共6页
Diamond-like carbon (DLC) films were prepared with CH4-Ar using a capacitively coupled plasma enhanced chemical vapor deposition (CCP-CVD) method driven by dual-frequency of 41 MHz and 13.56 MHz in combination. Du... Diamond-like carbon (DLC) films were prepared with CH4-Ar using a capacitively coupled plasma enhanced chemical vapor deposition (CCP-CVD) method driven by dual-frequency of 41 MHz and 13.56 MHz in combination. Due to a coupling via bulk plasma, the self-bias voltage depended not only on the radiofrequency (RF) power of the corresponding electrode but also on another RF power of the counter electrode. The influence of the discharge parameters on the deposition rate, optical and Raman properties of the deposited films was investigated. The optical band decreased basically with the increase in the input power of both the low frequency and high frequency. Raman measurements show that the deposited films have a maximal sp3 content with an applied negative self-bias voltage of -150 V, while high frequency power causes a continuous increase in the sp3 content. The measurement of atomic force microscope (AFM) shows that the surface of the deposited films under ion-bombardment becomes smoother than those with non-intended self-bias voltage. 展开更多
关键词 dual-frequency capacitively coupled discharge DLC Raman spectroscopy
下载PDF
Discharge characteristic of very high frequency capacitively coupled argon plasma 被引量:1
2
作者 Gui-Qin Yin Jing-Jing Wang +2 位作者 Shan-Shan Gao Yong-Bo Jiang Qiang-Hua Yuan 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期329-334,共6页
The discharge characteristics of capacitively coupled argon plasmas driven by very high frequency discharge are studied.The mean electron temperature and electron density are calculated by using the Ar spectral lines ... The discharge characteristics of capacitively coupled argon plasmas driven by very high frequency discharge are studied.The mean electron temperature and electron density are calculated by using the Ar spectral lines at different values of power(20 W-70 W)and four different frequencies(13.56 MHz,40.68 MHz,94.92 MHz,and 100 MHz).The mean electron temperature decreases with the increase of power at a fixed frequency.The mean electron temperature varies non-linearly with frequency increasing at constant power.At 40.68 MHz,the mean electron temperature is the largest.The electron density increases with the increase of power at a fixed frequency.In the cases of driving frequencies of 94.92 MHz and 100 MHz,the obtained electron temperatures are almost the same,so are the electron densities.Particle-in-cell/Monte-Carlo collision(PIC/MCC)method developed within the Vsim 8.0 simulation package is used to simulate the electron density,the potential distribution,and the electron energy probability function(EEPF)under the experimental condition.The sheath width increases with the power increasing.The EEPF of 13.56 MHz and 40.68 MHz are both bi-Maxwellian with a large population of low-energy electrons.The EEPF of 94.92 MHz and 100 MHz are almost the same and both are nearly Maxwellian. 展开更多
关键词 very high frequency discharges capacitively coupled plasma particle-in-cell/Monte-Carlo collisions
下载PDF
Effect of driving frequency on electron heating in capacitively coupled RF argon glow discharges at low pressure 被引量:1
3
作者 Tagra Samir 刘悦 +1 位作者 赵璐璐 周艳文 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期329-337,共9页
A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on e... A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared. 展开更多
关键词 capacitively coupled plasmas electron heating radio frequency(RF) glow discharges driving frequency
下载PDF
Driving frequency effects on the mode transition in capacitively coupled argon discharges
4
作者 刘相梅 宋远红 王友年 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期323-328,共6页
A one-dimensional fluid model is employed to investigate the discharge sustaining mechanisms in the capacitively coupled argon plasmas, by modulating the driving frequency in the range of 40 kHz-613 MHz. The model inc... A one-dimensional fluid model is employed to investigate the discharge sustaining mechanisms in the capacitively coupled argon plasmas, by modulating the driving frequency in the range of 40 kHz-613 MHz. The model incorporates the density and flux balance of electron and ion, electron energy balance, as well as Poisson's equation. In our simulation, the discharge experiences mode transition as the driving frequency increases, from the γ regime in which the discharge is maintained by the secondary electrons emitted from the electrodes under ion bombardment, to the a regime in which sheath oscillation is responsible for most of the electron heating in the discharge sustaining. The electron density and electron temperature at the centre of the discharge, as well as the ion flux on the electrode are figured out as a function of the driving frequency, to confirm the two regimes and transition between them. The effects of gas pressure, secondary electron emission coefficient and applied voltage on the discharge are also discussed. 展开更多
关键词 capacitively coupled plasma mode transition Ar discharge
下载PDF
Modeling of the nanoparticle coagulation in pulsed radio-frequency capacitively coupled C_2H_2 discharges
5
作者 刘相梅 李奇楠 李瑞 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期330-335,共6页
The role of pulse parameters on nanoparticle property is investigated self-consistently based on a couple of fluid model and aerosol dynamics model in a capacitively coupled parallel-plate acetylene(C2H2) discharge.... The role of pulse parameters on nanoparticle property is investigated self-consistently based on a couple of fluid model and aerosol dynamics model in a capacitively coupled parallel-plate acetylene(C2H2) discharge. In this model, the mass continuity equation, momentum balance equation, and energy balance equation for neutral gas are taken into account.Thus, the thermophoretic force arises when a gas temperature gradient exists. The typical results of this model are positive and negative ion densities, electron impact collisions rates, nanoparticle density, and charge distributions. The simulation is performed for duty ratio 0.4/0.7/1.0, as well as pulse modulation frequency from 40 kHz to 2.7 MHz for pure C2H2 discharges at a pressure of 500 mTorr. We find that the pulse parameters, especially the duty ratio, have a great affect on the dissociative attachment coefficient and the negative density. More importantly, by decreasing the duty ratio, nanoparticles start to diffuse to the wall. Under the action of gas flow, nanoparticle density peak is created in front of the pulse electrode,where the gas temperature is smaller. 展开更多
关键词 nanoparticle coagulation pulsed radio-frequency capacitively coupled acetylene discharges
下载PDF
Diagnostics of Argon Inductively Coupled Plasma and Dielectric Barrier Discharge Plasma by Optical Emission Spectroscopy
6
作者 张家良 俞世吉 +1 位作者 马滕才 邓新绿 《Plasma Science and Technology》 SCIE EI CAS CSCD 2001年第4期883-890,共8页
An experimental setup was built up to carry out radio frequency (RF) inductively coupled plasma (ICP) and dielectric barrier discharge (DBD), and to depict the optical emission spectra (OES) of the discharges. OES fro... An experimental setup was built up to carry out radio frequency (RF) inductively coupled plasma (ICP) and dielectric barrier discharge (DBD), and to depict the optical emission spectra (OES) of the discharges. OES from argon ICP and DBD plasmas in visible and near ultraviolet region were measured. For argon ICP, the higher RF power input (higher than 500 W for our machine), the higher degree of argon plasma ionization. But that doesn't mean a higher mean electron energy. With the increase in the power input, the mean electron energy increases slightly, whereas the density of electron increases apparently On the contrary, argon DBD discharge behaves in the manner of a pulsed DC discharge on optical emission spectroscopy and V-I characteristics. DBD current is composed of a series of pulses equally spaced in temporal domain. The Kinetics of DBD emission strength is mainly governed by the frequency of the current pulse. 展开更多
关键词 In ICP Diagnostics of Argon Inductively coupled Plasma and Dielectric Barrier discharge Plasma by Optical Emission Spectroscopy
下载PDF
RC-Coupled Atmospheric Glow Discharge in Air
7
作者 张禹涛 任春生 +4 位作者 马腾才 齐冰 王坤 刘峰 吴静 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第4期438-442,共5页
Resistance and capacity-coupled glow discharge (RCCGD) is a new method to produce atmospheric pressure glow discharge in air. In RCCGD, each electrode is connected with both a resistor R and a capacitor C. The R and... Resistance and capacity-coupled glow discharge (RCCGD) is a new method to produce atmospheric pressure glow discharge in air. In RCCGD, each electrode is connected with both a resistor R and a capacitor C. The R and C can provide a negative feedback to prevent the transition from glow to spark discharge. The influence of coupled resistance, coupled capacity, inter-electrode gap and power source frequency on the discharge is studied and discussed. 展开更多
关键词 PLASMA atmospheric glow discharge resistance and capacity-coupled glow discharge
下载PDF
Effects of direct current discharge on the spatial distribution of cylindrical inductively-coupled plasma at different gas pressures
8
作者 滑跃 宋健 +2 位作者 郝泽宇 张改玲 任春生 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第1期32-40,共9页
Stable operations of single direct current (DC) discharge, single radio frequency (RF) discharge and DC + RF hybrid discharge are achieved in a specially-designed DC enhanced inductively- coupled plasma (DCE-ICP... Stable operations of single direct current (DC) discharge, single radio frequency (RF) discharge and DC + RF hybrid discharge are achieved in a specially-designed DC enhanced inductively- coupled plasma (DCE-ICP) source. Their plasma characteristics, such as electron density, electron temperature and the electron density spatial distribution profiles are investigated and compared experimentally at different gas pressures. It is found that under the condition of single RF discharge, the electron density distribution profiles show a 'convex' shape and 'saddle' shape at gas pressures of 3 mTorr and 150 mTorr respectively. This result can be attributed to the transition of electron kinetics from nonlocal to local kinetics with an increase in gas pressure. Moreover, in the operation of DC q- RF hybrid discharge at different gas pressures, the DC discharge has different effects on plasma uniformity. The plasma uniformity can be improved by modulating DC power at a high pressure of 150 mTorr where local electron kinetics is dominant, whereas plasma uniformity deteriorates at a low pressure of 3 mTorr where nonlocal electron kinetics prevails. This phenomenon, as analyzed, is due to the obvious nonlinear enhancement effect of electron density at the chamber center, and the inherent radial distribution difference in the electron density with single RF discharge at different gas pressures. 展开更多
关键词 cylindrical inductively-coupled plasma DC RF hybrid discharge plasmauniformity gas pressure
下载PDF
Effect of a negative DC bias on a capacitively coupled Ar plasma operated at different radiofrequency voltages and gas pressures
9
作者 相垚君 王晓坤 +1 位作者 刘永新 王友年 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期62-71,共10页
The effect of a negative DC bias,|V_(dc)|,on the electrical parameters and discharge mode is investigated experimentally in a radiofrequency(RF)capacitively coupled Ar plasma operated at different RF voltage amplitude... The effect of a negative DC bias,|V_(dc)|,on the electrical parameters and discharge mode is investigated experimentally in a radiofrequency(RF)capacitively coupled Ar plasma operated at different RF voltage amplitudes and gas pressures.The electron density is measured using a hairpin probe and the spatio-temporal distribution of the electron-impact excitation rate is determined by phase-resolved optical emission spectroscopy.The electrical parameters are obtained based on the waveforms of the electrode voltage and plasma current measured by a voltage probe and a current probe.It was found that at a low|V_(dc)|,i.e.inα-mode,the electron density and RF current decline with increasing|V_(dc)|;meanwhile,the plasma impedance becomes more capacitive due to a widened sheath.Therefore,RF power deposition is suppressed.When|V_(dc)|exceeds a certain value,the plasma changes toα–γhybrid mode(or the discharge becomes dominated by theγ-mode),manifesting a drastically growing electron density and a moderately increasing RF current.Meanwhile,the plasma impedance becomes more resistive,so RF power deposition is enhanced with|V_(dc)|.We also found that the electrical parameters show similar dependence on|V_(dc)|at different RF voltages,andα–γmode transition occurs at a lower|V_(dc)|at a higher RF voltage.By increasing the pressure,plasma impedance becomes more resistive,so RF power deposition and electron density are enhanced.In particular,theα–γmode transition tends to occur at a lower|V_(dc)|with increase in pressure. 展开更多
关键词 RF capacitively coupled plasma DC-overlapped RF discharge power deposition discharge mode transition
下载PDF
Partial Discharge Source Classification and De-Noising in Rotating Machines Using Discrete Wavelet Transform and Directional Coupling Capacitor 被引量:1
10
作者 Mohammad Amin Kashiha Diman Zad Tootaghaj Dolat Jamshidi 《Journal of Electromagnetic Analysis and Applications》 2009年第2期92-96,共5页
This paper introduces a new method to separate PD1 from other disturbing signals present on the high voltage genera-tors and motors. The method is based on combination of a pattern classifier, the Discrete Wavelet Tra... This paper introduces a new method to separate PD1 from other disturbing signals present on the high voltage genera-tors and motors. The method is based on combination of a pattern classifier, the Discrete Wavelet Transform (DWT), to de-noise PD and Time-Of-Arrival method to separate PD sources. Furthermore, it will be shown that it can recognize PD sources including rotating machine’s internal and external discharge pulses (e.g. on the bus bar). 展开更多
关键词 Partial discharge Discrete WAVELET Transform TIME-OF-ARRIVAL ROTATING Machines DE-NOISING coupling CAPACITOR
下载PDF
Study of ionic wind based on dielectric barrier discharge of carbon fiber spiral electrode 被引量:2
11
作者 Wenzheng LIU Wenlong HU +2 位作者 Hao ZHAI Zhaoyang CUI Luxiang ZHAO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第3期8-16,共9页
Based on the idea that a large number of charged particles can be generated by a high-frequency alternating current(AC)dielectric barrier discharge(DBD),and charged particles can be accelerated directionally by a dire... Based on the idea that a large number of charged particles can be generated by a high-frequency alternating current(AC)dielectric barrier discharge(DBD),and charged particles can be accelerated directionally by a direct current(DC)electric field,a new type of ionic wind formation method is proposed in this paper.To this end,a carbon fiber spiral electrode serves as the generation electrode and a metal rod electrode as the collection electrode,with AC and DC potentials applied respectively to the generation electrode and the collection electrode to form an AC-DC coupled electric field.Under the action of the coupled electric field,a dielectric barrier discharge is formed on the carbon fiber spiral electrode,and the electrons generated by the discharge move from the generation electrode to the collection electrode in the opposite direction of the electric field vectors.During the movement,energy is transferred to the gas molecules by their colliding with neutral gas molecules,thereby forming a directional gas stream movement,i.e.ionic wind.In the research process,it is verified through electric field simulation analysis and discharge experiment that this method can effectively increase the number of charged particles in the discharge process,and the velocity of the ionic wind is nearly doubled.On this basis,the addition of a third electrode forms a distinct discharge region and an electron acceleration region,which further increases its velocity.The experimental result shows that the ionic wind speed reaches up to 2.98 m s^?1.Thanks to the ability of the electrode structure to generate an atmospheric pressure DBD plasma and form an ionic wind,we can create a noise-free air purification device without resorting to a fan,with this device having good application prospects in the field of air purification. 展开更多
关键词 IONIC wind DBD ac-dc coupled electric field air PURIFICATION
下载PDF
One-Dimensional Fluid Model of Pulse Modulated Radio-Frequency SiH_4 /N_2 /O_2 Discharge
12
作者 王燕 刘相梅 +1 位作者 宋远红 王友年 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第2期107-110,共4页
Driven by pulse modulated radio-frequency plasma in capacitively coupled discharge are studied by source, the behavior of SiH4/N2/02 using a one-dimensional fluid model. Totally, 48 different species (electrons, ions... Driven by pulse modulated radio-frequency plasma in capacitively coupled discharge are studied by source, the behavior of SiH4/N2/02 using a one-dimensional fluid model. Totally, 48 different species (electrons, ions, neutrals, radicals and excited species) are involved in this simulation. Time evolution of the particle densities and electron temperature with different duty cycles are obtained, as well as the electronegativity nsiH-3 /ne of the main negative ion (Sill3 ). The results show that, by reducing the duty cycle, higher electron temperature and particle density can be achieved for the same average dissipated power, and the ion energy can also be effectively reduced, which will offer evident improvement in plasma deposition processes compared with the case of continuous wave discharge. 展开更多
关键词 pulsed modulation SiH4/N2/02 discharge capacitively coupled plasma fluidmodel
下载PDF
Effects of temperature on creepage discharge characteristics in oil-impregnated pressboard insulation under combined AC–DC voltage
13
作者 Fubao JIN Yuanxiang ZHOU +2 位作者 Bin LIANG Zhongliu ZHOU Ling ZHANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第5期14-22,共9页
Due to the complexity of the valve side winding voltage of the converter transformer, the insulation characteristics of the oil-impregnated pressboard(OIP) of the converter transformer are different from those of the ... Due to the complexity of the valve side winding voltage of the converter transformer, the insulation characteristics of the oil-impregnated pressboard(OIP) of the converter transformer are different from those of the traditional AC transformer. The study on effect of temperature on the creeping discharge characteristics of OIP under combined AC–DC voltage is seriously inadequate. Therefore, this paper investigates the characteristics of OIP creepage discharge under combined AC–DC voltage and discusses the influence of temperature on creepage discharge characteristics under different temperatures from 70 °C to 110 °C. The experimental results show that the partial discharge inception voltage and flashover voltage decrease with increasing temperature. The times of low amplitude discharge(LAD) decrease and amplitude of LAD increases. Simultaneously, the times of high amplitude discharge(HAD) gradually increase at each stage of creepage discharge with higher temperature. The analysis indicates that the charge carriers easily accumulate and quickly migrate directional movement along the electric field ahead of discharging. The residual charge carriers are more easily dissipated after discharging.The ‘hump’ region of LAD moves to the direction of higher discharge magnitude. The interval time between two continuous discharges is shortened obviously. The concentration of HAD accelerates the development of OIP insulation creepage discharge. The temperature had an accelerating effect on the development of discharge in the OIP under applying voltage. 展开更多
关键词 oil-impregnated PRESSBOARD INSULATION combined ac-dc VOLTAGE inception VOLTAGE CREEPAGE discharge temperature flashover VOLTAGE
下载PDF
The effects of process conditions on the plasma characteristic in radio-frequency capacitively coupled SiH_4/NH_3/N_2 plasmas: Two-dimensional simulations
14
作者 刘相梅 宋远红 +1 位作者 姜巍 易林 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期338-343,共6页
A two-dimensional (2D) fluid model is presented to study the behavior of silicon plasma mixed with SiH4 , N2 , and NH3 in a radio-frequency capacitively coupled plasma (CCP) reactor. The plasma–wall interaction ... A two-dimensional (2D) fluid model is presented to study the behavior of silicon plasma mixed with SiH4 , N2 , and NH3 in a radio-frequency capacitively coupled plasma (CCP) reactor. The plasma–wall interaction (including the deposition) is modeled by using surface reaction coefficients. In the present paper we try to identify, by numerical simulations, the effect of variations of the process parameters on the plasma properties. It is found from our simulations that by increasing the gas pressure and the discharge gap, the electron density profile shape changes continuously from an edge-high to a center-high, thus the thin films become more uniform. Moreover, as the N2 /NH3 ratio increases from 6/13 to 10/9, the hydrogen content can be significantly decreased, without decreasing the electron density significantly. 展开更多
关键词 capacitively coupled plasma process conditions effects SiH4/NH3/N2 discharges
下载PDF
Effect of Addition of Nitrogen to a Capacitively Radio-Frequency Hydrogen Discharge
15
作者 张连珠 姚福宝 +2 位作者 赵国明 郝莹莹 孙倩 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第3期203-210,共8页
A hybrid PIC/MC model is developed in this work for H2-xN2 capacitively coupled radio-frequency (CCRF) discharges in which we take into account 43 kinds of collisions reaction processes between charged particles (e... A hybrid PIC/MC model is developed in this work for H2-xN2 capacitively coupled radio-frequency (CCRF) discharges in which we take into account 43 kinds of collisions reaction processes between charged particles (e-, H3+, H+, H+, N+, N+) and ground-state molecules (H2, H+ N2). In addition, the mean energies and densities of electrons and ions ( 3, H+, H+), and electric field distributions in the H2-N2 CCRF discharge are simulated by this model. Furthermore, the effects of addition of a variable percentage of nitrogen (0-30%) into the H2 discharge on the plasma processes and discharge characteristics are studied. It is shown that by increasing the percentage of nitrogen added to the system, the RF sheath thickness will narrow, the sheath electric field will be enhanced, and the mean energy of hydrogen ions impacting the electrodes will be increased. Because the electron impact ionization and dissociative ionization rates increase when N2 is added to the system, the electron mean density will increase while the electron mean energy and hydrogen ion density near the electrodes will decrease. This work aims to provide a theoretical basis for experimental studies and technological developments with regard to H2-N2 CCRF plasmas. 展开更多
关键词 H2-N2 capacitively coupled radio-frequency discharge H2 plasma PIC/MCsimulation
下载PDF
Time-resolved radial uniformity of pulse-modulated inductively coupled O_(2)/Ar plasmas
16
作者 Wei Liu Chan Xue +3 位作者 Fei Gao Yong-Xin Liu You-Nian Wang Yong-Tao Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期401-408,共8页
Time-resolved radial uniformity of pulse-modulated inductively coupled O_(2)/Ar plasma has been investigated by means of a Langmuir probe as well as an optical probe in this paper. The radial uniformity of plasma has ... Time-resolved radial uniformity of pulse-modulated inductively coupled O_(2)/Ar plasma has been investigated by means of a Langmuir probe as well as an optical probe in this paper. The radial uniformity of plasma has been discussed through analyzing the nonuniformity factor β(calculated by the measured n_e, lower β means higher plasma radial uniformity). The results show that during the active-glow period, the radial distribution of ne exhibits an almost flat profile at the beginning phase, but it converts into a parabola-like profile during the steady state. The consequent evolution for β is that when the power is turned on, it declines to a minimum at first, and then it increases to a maximum, after that, it decays until it keeps constant. This phenomenon can be explained by the fact that the ionization gradually becomes stronger at the plasma center and meanwhile the rebuilt electric field(plasma potential and ambipolar potential) will confine the electrons at the plasma center as well. Besides, the mean electron energy( <ε>_(on)) at the pulse beginning decreases with the increasing duty cycle. This will postpone the plasma ignition after the power is turned on. This phenomenon has been verified by the emission intensity of Ar(λ = 750.4 nm). During the after-glow period, it is interesting to find that the electrons have a large depletion rate at the plasma center. Consequently, ne forms a hollow distribution in the radial direction at the late stage of after-glow. Therefore, β exhibits a maximum at the same time. This can be attributed to the formation of negative oxygen ion(O^(-)) at the plasma center when the power has been turned off. 展开更多
关键词 plasma radial uniformity pulse-modulated discharge inductively coupled plasma Langmuir probe
下载PDF
Effectiveness of Radiofrequency Inductively Coupled Plasma Sources for Space Propulsion 被引量:1
17
作者 V. A. Riaby P E. Masherov +1 位作者 V. A. Obukhov V. P. Savinov 《高电压技术》 EI CAS CSCD 北大核心 2013年第9期2077-2088,共12页
Evolution of geometric forms of antenna coils for radiofrequency(RF)inductively coupled plasma(ICP)sources is analyzed.Top effectiveness of flat ICPSs generating plasma"tablet"is shown.Especially effective a... Evolution of geometric forms of antenna coils for radiofrequency(RF)inductively coupled plasma(ICP)sources is analyzed.Top effectiveness of flat ICPSs generating plasma"tablet"is shown.Especially effective are ICPSs using antenna coils enhanced with ferromagnetic cores(FMICPS).It is found that the design of flat ICPSs is simpler and more convenient for the arrangement of plasma diagnostics in comparison with ICPSs of other geometries.Effective flat FMICPS models of different diameters ranging from 10 cm to 100cm are considered.Recommendations are given for development engineers dealing with ICPS devices in general and with radio frequency ion thrusters(RITs)in particular. 展开更多
关键词 电感耦合等离子体 等离子体源 空间推进 射频 等离子体诊断 几何形式 ICPS 离子推进器
下载PDF
Quasi-delta negative ions density of Ar/O_(2)inductively coupled plasma at very low electronegativity
18
作者 Shu-Xia Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期460-483,共24页
One of the novel phenomena of Ar/O_(2)inductively coupled plasma,the delta negative ions density profile is discovered by the fluid simulation at very low electronegativity.The anions delta is found to be formed by th... One of the novel phenomena of Ar/O_(2)inductively coupled plasma,the delta negative ions density profile is discovered by the fluid simulation at very low electronegativity.The anions delta is found to be formed by the collaboration of successive plasma transport phases.The plasma transport itself is affected by the delta,exhibiting many new phenomena.A new type of Helmholtz equation is devised to mathematically explain the delta forming mechanism.For revealing the physics behind,a revised spring oscillator dynamic equation has been constructed according to the Helmholtz equation,in a relevant paper[Zhao S X and Li J Z(2021)Chin.Phys.B 30055202].The investigation about the anions delta distribution is a nice prediction of new phenomenon in low temperature electronegative plasmas,waiting for the validation of related experiments. 展开更多
关键词 inductively coupled plasma Ar/O_(2)discharge very low electronegativity delta distribution of anions
下载PDF
Measurement of cathode surface temperature using the method of CCD imaging in arc discharge
19
作者 LI Hui WANG Chuan-Bing 《Nuclear Science and Techniques》 SCIE CAS CSCD 2006年第4期237-240,共4页
A two-wavelength pyrometry device using ordinary array CCD (charge coupled device) to collect the ra- diation data in the horizontal and vertical directions has been developed for measuring the cathode surface tempera... A two-wavelength pyrometry device using ordinary array CCD (charge coupled device) to collect the ra- diation data in the horizontal and vertical directions has been developed for measuring the cathode surface temperature during the arc discharge. Analyses of experimental results show that the device can make the measurement of the cathode surface temperature feasible. The cathode surface temperatures measured are lower than the melting point of tungsten (3653 K), and the arc current, cathode diameter, and the cathode length are the main influencing factors of the cathode surface temperature. 展开更多
关键词 阴极表面温度 电弧放电 电荷耦合器件 双波长测高温技术
下载PDF
Optical detection method of discharge mode transition of inductively coupled plasma in an atmosphere-breathing electric propulsion system
20
作者 Yuxuan ZHONG Yu ZHANG +1 位作者 Jianjun WU Peng ZHENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期172-183,共12页
Plasma discharge stability is an important problem in atmosphere-breathing electric propulsion system when maintaining long-term missions at ultra-low earth orbit.This paper designed an inductively coupled plasma sour... Plasma discharge stability is an important problem in atmosphere-breathing electric propulsion system when maintaining long-term missions at ultra-low earth orbit.This paper designed an inductively coupled plasma source to imitate the ionization section.The effect of inflow rate and Radio Frequency(RF)power on the plasma discharge mode transition is experimentally studied.A discharge mode detection method is proposed,which determines the discharge mode by identifying the morphology of the plasma core.By using the method,the discharge mode transition is quantified and a control model based on the parameter sensitivity is constructed.To verify the method,the spectra are measured and the electron temperature spatial distribution is calculated.And the method has been proven effective.The results show that the inductively coupled discharge contains capacitive components affected by the mass flow rate and the radio frequency power.The plasma characteristics can be maintained stably by controlling the radio frequency power when the mass flow rate randomly changes in a certain range.It is demonstrated that the application of detection method effectively identifies the discharge mode,which is a promising active control method for the plasma discharge mode. 展开更多
关键词 Atmosphere-breathing electric propulsion Inductively coupled plasma discharge mode transition Optical diagnosis Ultra-low earth orbit
原文传递
上一页 1 2 17 下一页 到第
使用帮助 返回顶部