Thinopyrum intermedium and barley are two close relatives of wheat and carry many genes that are potentially valuable for the improvement of various wheat traits. In this study we created wheat double substitution lin...Thinopyrum intermedium and barley are two close relatives of wheat and carry many genes that are potentially valuable for the improvement of various wheat traits. In this study we created wheat double substitution lines by hybridizing different wheat–Th. intermedium and wheat–barley disomic alien substitution lines, with the aim of using genes in Th. intermedium and barley for wheat breeding and investigating the genetic behavior of alien chromosomes and their wheat homoeologs. As expected, we obtained two types of wheat double substitution lines,2D2Ai#2(2B)2H( A) and 2A2 Ai#2(2B)2H(2D), in which different group 2 wheat chromosomes were replaced by barley chromosome 2 H and Th. intermedium chromosome 2Ai#2. The new materials were characterized using molecular markers, genomic in situ hybridization(GISH), and fluorescent in situ hybridization(FISH). GISH and FISH experiments revealed that the double substitution lines harbor 42 chromosomes including 38 wheat chromosomes, a pair of barley chromosomes, and a pair of Th. intermedium chromosomes. Analysis using specific DNA markers showed that two pairs of wheat homoeologous group 2 chromosomes in the new lines were substituted by a pair of 2H and a pair of 2Ai#2 chromosomes. Chromosome 2H showed a higher transmission rate than 2Ai#2, and both chromosomes were preferentially transmitted between generations via female gametes. Evaluation of botanic and agronomic traits demonstrated that,compared with their parents, the new lines showed similar growth habits and plant type but differences in plant height, flowering date, and self-fertility. Cytological observations using different probes suggested that the double substitution lines showed nearly normal genetic behavior before and during meiosis. The novel substitution lines can potentially be used in wheat meiosis research and breeding programs.展开更多
The hybrid cascaded high-voltage direct current(HVDC)transmission system has various operation modes,and some operation modes have sharply increasing requirements for protection rapidity,while the traditional pilot di...The hybrid cascaded high-voltage direct current(HVDC)transmission system has various operation modes,and some operation modes have sharply increasing requirements for protection rapidity,while the traditional pilot differential protection(PDP)has poor rapidity,and even refuses to operate when faults occur on the DC line.Therefore,a novel pilot protection scheme based on traveling wave characteristics is proposed.First,the adaptability of the traditional PDP applied in engineering is analyzed for different operation modes.Then,the expressions of the forward traveling wave(FTW)and backward traveling wave(BTW)on the rectifier side and the inverter side are derived for different fault locations.From the theoretical derivation,the difference between the BTW and FTW on the rectifier side is less than zero,and the same is true on the inverter side.However,in the event of an external fault of DC line,the difference between the BTW and FTW at nearfault terminal protection installation point is greater than zero.Therefore,by summing over the product of the difference between BTW and FTW of the rectifier side and that of the inverter side,the fault identification criterion is constructed.The simulation results show that the proposed pilot protection scheme can quickly and reliably identify the short-circuit faults of DC line in different operation modes.展开更多
为提高系统运行稳定性,高补偿度串补装置广泛投入使用,但线路故障后潜供电流存在高幅值的低频分量,潜供电弧难以自熄。针对此问题,基于交直流混联输电线路,研究了不同布置方式下串补度对潜供电流与恢复电压幅值影响,提出了一种固定串补(...为提高系统运行稳定性,高补偿度串补装置广泛投入使用,但线路故障后潜供电流存在高幅值的低频分量,潜供电弧难以自熄。针对此问题,基于交直流混联输电线路,研究了不同布置方式下串补度对潜供电流与恢复电压幅值影响,提出了一种固定串补(fixed series compensation,FSC)和可控串补(thyristor controlled series compensation,TCSC)混合复用抑制潜供电弧的方法。此外,为满足线路对高补偿度的需求,设计FSC和TCSC混合复用串补度最佳配置方案。结果表明,交直流混联线路采用串补度40%的双平台分散布置方式,潜供电流与恢复电压幅值达到最小,燃弧时间最短。高补偿度串补线路TCSC采用串补度10%、20%的配置方案更利于熄弧,提高重合闸成功率。展开更多
基金financially supported by the National Key Research and Development Program of China(2016YFD0102001 and 2016YFD0102002)the National Natural Science Foundation of China(31771788)the Agricultural Science and Technology Innovation Program(ASTIP)of the Chinese Academy of Agricultural Sciences
文摘Thinopyrum intermedium and barley are two close relatives of wheat and carry many genes that are potentially valuable for the improvement of various wheat traits. In this study we created wheat double substitution lines by hybridizing different wheat–Th. intermedium and wheat–barley disomic alien substitution lines, with the aim of using genes in Th. intermedium and barley for wheat breeding and investigating the genetic behavior of alien chromosomes and their wheat homoeologs. As expected, we obtained two types of wheat double substitution lines,2D2Ai#2(2B)2H( A) and 2A2 Ai#2(2B)2H(2D), in which different group 2 wheat chromosomes were replaced by barley chromosome 2 H and Th. intermedium chromosome 2Ai#2. The new materials were characterized using molecular markers, genomic in situ hybridization(GISH), and fluorescent in situ hybridization(FISH). GISH and FISH experiments revealed that the double substitution lines harbor 42 chromosomes including 38 wheat chromosomes, a pair of barley chromosomes, and a pair of Th. intermedium chromosomes. Analysis using specific DNA markers showed that two pairs of wheat homoeologous group 2 chromosomes in the new lines were substituted by a pair of 2H and a pair of 2Ai#2 chromosomes. Chromosome 2H showed a higher transmission rate than 2Ai#2, and both chromosomes were preferentially transmitted between generations via female gametes. Evaluation of botanic and agronomic traits demonstrated that,compared with their parents, the new lines showed similar growth habits and plant type but differences in plant height, flowering date, and self-fertility. Cytological observations using different probes suggested that the double substitution lines showed nearly normal genetic behavior before and during meiosis. The novel substitution lines can potentially be used in wheat meiosis research and breeding programs.
基金supported in part by the National Natural Science Foundation of China(No.51977183)。
文摘The hybrid cascaded high-voltage direct current(HVDC)transmission system has various operation modes,and some operation modes have sharply increasing requirements for protection rapidity,while the traditional pilot differential protection(PDP)has poor rapidity,and even refuses to operate when faults occur on the DC line.Therefore,a novel pilot protection scheme based on traveling wave characteristics is proposed.First,the adaptability of the traditional PDP applied in engineering is analyzed for different operation modes.Then,the expressions of the forward traveling wave(FTW)and backward traveling wave(BTW)on the rectifier side and the inverter side are derived for different fault locations.From the theoretical derivation,the difference between the BTW and FTW on the rectifier side is less than zero,and the same is true on the inverter side.However,in the event of an external fault of DC line,the difference between the BTW and FTW at nearfault terminal protection installation point is greater than zero.Therefore,by summing over the product of the difference between BTW and FTW of the rectifier side and that of the inverter side,the fault identification criterion is constructed.The simulation results show that the proposed pilot protection scheme can quickly and reliably identify the short-circuit faults of DC line in different operation modes.
文摘为提高系统运行稳定性,高补偿度串补装置广泛投入使用,但线路故障后潜供电流存在高幅值的低频分量,潜供电弧难以自熄。针对此问题,基于交直流混联输电线路,研究了不同布置方式下串补度对潜供电流与恢复电压幅值影响,提出了一种固定串补(fixed series compensation,FSC)和可控串补(thyristor controlled series compensation,TCSC)混合复用抑制潜供电弧的方法。此外,为满足线路对高补偿度的需求,设计FSC和TCSC混合复用串补度最佳配置方案。结果表明,交直流混联线路采用串补度40%的双平台分散布置方式,潜供电流与恢复电压幅值达到最小,燃弧时间最短。高补偿度串补线路TCSC采用串补度10%、20%的配置方案更利于熄弧,提高重合闸成功率。
文摘针对行波法在混合线路中波速不连续和波速选取经验值导致测距精度误差较大的问题。提出用测试分布电流的皮尔逊相关性,确定故障区间,采用变分模态分解法(variational mode decomposition,VMD)对信号分解,用Teager能量算子(Teager energy operator,TEO)找到能量突变点计算故障距离。通过PSCAD/EMTDC与MATLAB进行仿真。结果表明:测距精度有明显提高且不受过渡电阻和故障类型的影响。