期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于辅助分类器和变分自编码生成对抗网络的干扰识别
1
作者
唐言
赵知劲
+2 位作者
岳克强
郑仕链
王李军
《计算机应用与软件》
北大核心
2023年第12期141-146,共6页
针对基于深度学习干扰识别方法在小样本集情况下性能恶化问题,提出一种基于辅助分类器和变分自编码生成对抗网络(AC-VAEGAN)的干扰识别方法。利用生成对抗网络和变分自编码器的核心思想设计识别模型,得到连续有意义的干扰样本集潜在空间...
针对基于深度学习干扰识别方法在小样本集情况下性能恶化问题,提出一种基于辅助分类器和变分自编码生成对抗网络(AC-VAEGAN)的干扰识别方法。利用生成对抗网络和变分自编码器的核心思想设计识别模型,得到连续有意义的干扰样本集潜在空间;确定编码器、生成器和鉴别器的损失函数,且鉴别器采用动态学习率的优化算法,使得模型训练过程更加有效且稳定。仿真结果表明,在干扰时频图小样本数据集情况下,当干噪比为-10 dB~10 dB时,该方法对宽带噪声干扰、部分频带噪声干扰、单音干扰、多音干扰、脉冲干扰、跳频干扰、线性扫频干扰和二次扫频干扰这八种干扰的正确识别率均高于ACGAN和CNN。
展开更多
关键词
干扰识别
ac-vaegan
生成对抗网络
变分自编码器
时频图
小样本数据集
下载PDF
职称材料
题名
基于辅助分类器和变分自编码生成对抗网络的干扰识别
1
作者
唐言
赵知劲
岳克强
郑仕链
王李军
机构
杭州电子科技大学通信工程学院
中国电子科技集团第
出处
《计算机应用与软件》
北大核心
2023年第12期141-146,共6页
基金
国家自然科学基金项目(U19B2016)。
文摘
针对基于深度学习干扰识别方法在小样本集情况下性能恶化问题,提出一种基于辅助分类器和变分自编码生成对抗网络(AC-VAEGAN)的干扰识别方法。利用生成对抗网络和变分自编码器的核心思想设计识别模型,得到连续有意义的干扰样本集潜在空间;确定编码器、生成器和鉴别器的损失函数,且鉴别器采用动态学习率的优化算法,使得模型训练过程更加有效且稳定。仿真结果表明,在干扰时频图小样本数据集情况下,当干噪比为-10 dB~10 dB时,该方法对宽带噪声干扰、部分频带噪声干扰、单音干扰、多音干扰、脉冲干扰、跳频干扰、线性扫频干扰和二次扫频干扰这八种干扰的正确识别率均高于ACGAN和CNN。
关键词
干扰识别
ac-vaegan
生成对抗网络
变分自编码器
时频图
小样本数据集
Keywords
Jamming recognition
ac-vaegan
GAN
VAE
Time-frequency diagrams
Small sample dataset
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于辅助分类器和变分自编码生成对抗网络的干扰识别
唐言
赵知劲
岳克强
郑仕链
王李军
《计算机应用与软件》
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部