为寻求模型不匹配问题的一种恰当的解决途径,提出了基于语料分布特性的CADIC(clustering algorithm based on the distributions of intrinsic clusters)聚类算法.CADIC以重标度的形式隐式地将语料特性融入算法框架,从而使算法模型具备...为寻求模型不匹配问题的一种恰当的解决途径,提出了基于语料分布特性的CADIC(clustering algorithm based on the distributions of intrinsic clusters)聚类算法.CADIC以重标度的形式隐式地将语料特性融入算法框架,从而使算法模型具备更灵活的适应能力.在聚类过程中,CADIC选择一组具有良好区分度的方向构建CADIC坐标系,在该坐标系下统计固有簇的分布特性,以构造各个坐标轴的重标度函数,并以重标度的形式对语料分布进行隐式的归一化,从而提高聚类决策的有效性.CADIC以迭代的方式收敛到最终解,其时间复杂度与K-means保持在同一量级.在国际知名评测语料上的实验结果表明,CADIC算法的基本框架是合理的,其聚类性能与当前领先水平的聚类算法相当.展开更多
为了解决判别聚落群过于依赖考古专家人工划分的问题,以郑洛地区新石器时代聚落遗址为例,采用基于密度的DBSCAN(density-based spatial clustering of applications with noise)算法对聚落遗址进行空间聚类研究。通过对郑洛地区四个文...为了解决判别聚落群过于依赖考古专家人工划分的问题,以郑洛地区新石器时代聚落遗址为例,采用基于密度的DBSCAN(density-based spatial clustering of applications with noise)算法对聚落遗址进行空间聚类研究。通过对郑洛地区四个文化时期聚落遗址的分布分析,发现郑洛地区的主体聚落群从研究区东部的嵩山以南地区,转移到郑洛地区中部的伊洛河流域,并且在伊洛河流域长期定居下来,不断发展扩大;大型聚落遗址主要分布在主体聚落群里,除了裴李岗文化时期部分大型聚落较孤立;从仰韶文化后期到龙山文化时期,聚落遗址分布呈主从式环状分布格局;大多数聚落群的走向都和河流分布一致。研究表明,利用DBSCAN算法进行聚落遗址聚类是可行的,通过聚类得到郑洛地区新石器时代四个文化时期聚落遗址的分布特征。展开更多
密度峰值聚类(Density peaks clustering简称DPC)算法是2014年在美国Science期刊上发表的一种非常简洁优美的聚类算法,它不需要像经典K-means算法那样迭代,也不需要很多参数。DPC算法的核心思想在于对聚类中心的刻画,它通过计算数据集...密度峰值聚类(Density peaks clustering简称DPC)算法是2014年在美国Science期刊上发表的一种非常简洁优美的聚类算法,它不需要像经典K-means算法那样迭代,也不需要很多参数。DPC算法的核心思想在于对聚类中心的刻画,它通过计算数据集中每个数据点的局部密度和该点到具有更高局部密度的点的最小距离,当数据点的■的值较大时,该点为聚类中心。然而通过分析,发现这样选取聚类中心得聚类效果不具有稳健性,依赖于和的量纲。本文提出一种改进的密度峰值聚类算法,将和归一化后的和记为每个点的权重,构造函数■作为选取聚类中心的判决函数,结合模拟计算,验证本文的方法更鲁棒,选取聚类中心效果更好,且复杂度降低。展开更多
针对点云数据中噪声点的剔除问题,提出了一种基于改进DBSCAN(density-based spatial clustering of applications with noise)算法的多尺度点云去噪方法。应用统计滤波对孤立离群点进行预筛选,去除点云中的大尺度噪声;对DBSCAN算法进行...针对点云数据中噪声点的剔除问题,提出了一种基于改进DBSCAN(density-based spatial clustering of applications with noise)算法的多尺度点云去噪方法。应用统计滤波对孤立离群点进行预筛选,去除点云中的大尺度噪声;对DBSCAN算法进行优化,减少算法时间复杂度和实现参数的自适应调整,以此将点云分为正常簇、疑似簇及异常簇,并立即去除异常簇;利用距离共识评估法对疑似簇进行精细判定,通过计算疑似点与其最近的正常点拟合表面之间的距离,判定其是否为异常,有效保持了数据的关键特征和模型敏感度。利用该方法对两个船体分段点云进行去噪,并与其他去噪算法进行对比,结果表明,该方法在去噪效率和特征保持方面具有优势,精确地保留了点云数据的几何特性。展开更多
针对即时配送“最后一公里”的问题,综合利用订单取送点、即时配送骑手历史时空轨迹、兴趣面(area of interest,AOI)空间范围与门禁位置等数据,精确预估AOI内部各兴趣点(point of interest,POI)到相应可通行门禁点的时间、距离及路径。...针对即时配送“最后一公里”的问题,综合利用订单取送点、即时配送骑手历史时空轨迹、兴趣面(area of interest,AOI)空间范围与门禁位置等数据,精确预估AOI内部各兴趣点(point of interest,POI)到相应可通行门禁点的时间、距离及路径。在此基础上设计了配套的调用选优策略,获得最优的末端指引方案,以有效提高即时配送路径质量及时间距离预估准确性。展开更多
文摘为寻求模型不匹配问题的一种恰当的解决途径,提出了基于语料分布特性的CADIC(clustering algorithm based on the distributions of intrinsic clusters)聚类算法.CADIC以重标度的形式隐式地将语料特性融入算法框架,从而使算法模型具备更灵活的适应能力.在聚类过程中,CADIC选择一组具有良好区分度的方向构建CADIC坐标系,在该坐标系下统计固有簇的分布特性,以构造各个坐标轴的重标度函数,并以重标度的形式对语料分布进行隐式的归一化,从而提高聚类决策的有效性.CADIC以迭代的方式收敛到最终解,其时间复杂度与K-means保持在同一量级.在国际知名评测语料上的实验结果表明,CADIC算法的基本框架是合理的,其聚类性能与当前领先水平的聚类算法相当.
文摘为了解决判别聚落群过于依赖考古专家人工划分的问题,以郑洛地区新石器时代聚落遗址为例,采用基于密度的DBSCAN(density-based spatial clustering of applications with noise)算法对聚落遗址进行空间聚类研究。通过对郑洛地区四个文化时期聚落遗址的分布分析,发现郑洛地区的主体聚落群从研究区东部的嵩山以南地区,转移到郑洛地区中部的伊洛河流域,并且在伊洛河流域长期定居下来,不断发展扩大;大型聚落遗址主要分布在主体聚落群里,除了裴李岗文化时期部分大型聚落较孤立;从仰韶文化后期到龙山文化时期,聚落遗址分布呈主从式环状分布格局;大多数聚落群的走向都和河流分布一致。研究表明,利用DBSCAN算法进行聚落遗址聚类是可行的,通过聚类得到郑洛地区新石器时代四个文化时期聚落遗址的分布特征。
文摘密度峰值聚类(Density peaks clustering简称DPC)算法是2014年在美国Science期刊上发表的一种非常简洁优美的聚类算法,它不需要像经典K-means算法那样迭代,也不需要很多参数。DPC算法的核心思想在于对聚类中心的刻画,它通过计算数据集中每个数据点的局部密度和该点到具有更高局部密度的点的最小距离,当数据点的■的值较大时,该点为聚类中心。然而通过分析,发现这样选取聚类中心得聚类效果不具有稳健性,依赖于和的量纲。本文提出一种改进的密度峰值聚类算法,将和归一化后的和记为每个点的权重,构造函数■作为选取聚类中心的判决函数,结合模拟计算,验证本文的方法更鲁棒,选取聚类中心效果更好,且复杂度降低。
文摘针对点云数据中噪声点的剔除问题,提出了一种基于改进DBSCAN(density-based spatial clustering of applications with noise)算法的多尺度点云去噪方法。应用统计滤波对孤立离群点进行预筛选,去除点云中的大尺度噪声;对DBSCAN算法进行优化,减少算法时间复杂度和实现参数的自适应调整,以此将点云分为正常簇、疑似簇及异常簇,并立即去除异常簇;利用距离共识评估法对疑似簇进行精细判定,通过计算疑似点与其最近的正常点拟合表面之间的距离,判定其是否为异常,有效保持了数据的关键特征和模型敏感度。利用该方法对两个船体分段点云进行去噪,并与其他去噪算法进行对比,结果表明,该方法在去噪效率和特征保持方面具有优势,精确地保留了点云数据的几何特性。
文摘针对即时配送“最后一公里”的问题,综合利用订单取送点、即时配送骑手历史时空轨迹、兴趣面(area of interest,AOI)空间范围与门禁位置等数据,精确预估AOI内部各兴趣点(point of interest,POI)到相应可通行门禁点的时间、距离及路径。在此基础上设计了配套的调用选优策略,获得最优的末端指引方案,以有效提高即时配送路径质量及时间距离预估准确性。