针对传统的蚂蚁算法容易出现早熟和停滞现象,提出一种新型蚂蚁算法(new ant colony algorithm,NACA),即将转移规则、全局信息素灾变规则和局部混合调整信息素规则。选择几个典型TSP问题进行实验。研究结果表明:新型蚂蚁算法一方面提高...针对传统的蚂蚁算法容易出现早熟和停滞现象,提出一种新型蚂蚁算法(new ant colony algorithm,NACA),即将转移规则、全局信息素灾变规则和局部混合调整信息素规则。选择几个典型TSP问题进行实验。研究结果表明:新型蚂蚁算法一方面提高了算法种群的多样性,同时将轮盘赌算子利用到城市转移规则中,有利于提高算法的收敛速度;另一方面,将种群个体的差分信息应用于局部信息素更新规则中,有利于搜索全局解;最后灾变算子避免算法陷入局部最优,而达到全局最优。新型的蚁群算法具有更强的搜索全局最优解的能力以及更好的稳定性和收敛性,同时为解决其他优化问题提供新的思路。展开更多
A Genetic Algorithm-Ant Colony Algorithm(GA-ACA),which can be used to optimize multi-Unit Under Test(UUT)parallel test tasks sequences and resources configuration quickly and accurately,is proposed in the paper.With t...A Genetic Algorithm-Ant Colony Algorithm(GA-ACA),which can be used to optimize multi-Unit Under Test(UUT)parallel test tasks sequences and resources configuration quickly and accurately,is proposed in the paper.With the establishment of the mathematic model of multi-UUT parallel test tasks and resources,the condition of multi-UUT resources mergence is analyzed to obtain minimum resource requirement under minimum test time.The definition of cost efficiency is put forward,followed by the design of gene coding and path selection project,which can satisfy multi-UUT parallel test tasks scheduling.At the threshold of the algorithm,GA is adopted to provide initial pheromone for ACA,and then dual-convergence pheromone feedback mode is applied in ACA to avoid local optimization and parameters dependence.The practical application proves that the algorithm has a remarkable effect on solving the problems of multi-UUT parallel test tasks scheduling and resources configuration.展开更多
In light of the high nonlinearity of LuGre friction model, a novel method based on ant colony algorithm(ACA) for identifying the friction parameters of flight simulation servo system is proposed. ACA is a parallelized...In light of the high nonlinearity of LuGre friction model, a novel method based on ant colony algorithm(ACA) for identifying the friction parameters of flight simulation servo system is proposed. ACA is a parallelized bionic optimization algorithm inspired from the behavior of real ants, and a kind of positive feedback mechanism is adopted in ACA. On the basis of brief introduction of LuGre friction model, a method for identifying the static LuGre friction parameters and the dynamic LuGre friction parameters using ACA is derived. Finally, this new friction parameter identification scheme is applied to a electric-driven flight simulation servo system with high precision. Simulation and application results verify the feasibility and the effectiveness of the scheme. It provides a new way to identify the friction parameters of LuGre model.展开更多
文摘针对传统的蚂蚁算法容易出现早熟和停滞现象,提出一种新型蚂蚁算法(new ant colony algorithm,NACA),即将转移规则、全局信息素灾变规则和局部混合调整信息素规则。选择几个典型TSP问题进行实验。研究结果表明:新型蚂蚁算法一方面提高了算法种群的多样性,同时将轮盘赌算子利用到城市转移规则中,有利于提高算法的收敛速度;另一方面,将种群个体的差分信息应用于局部信息素更新规则中,有利于搜索全局解;最后灾变算子避免算法陷入局部最优,而达到全局最优。新型的蚁群算法具有更强的搜索全局最优解的能力以及更好的稳定性和收敛性,同时为解决其他优化问题提供新的思路。
基金supported by“11th Five-year Projects”pre-research projects fund of the National Arming Department
文摘A Genetic Algorithm-Ant Colony Algorithm(GA-ACA),which can be used to optimize multi-Unit Under Test(UUT)parallel test tasks sequences and resources configuration quickly and accurately,is proposed in the paper.With the establishment of the mathematic model of multi-UUT parallel test tasks and resources,the condition of multi-UUT resources mergence is analyzed to obtain minimum resource requirement under minimum test time.The definition of cost efficiency is put forward,followed by the design of gene coding and path selection project,which can satisfy multi-UUT parallel test tasks scheduling.At the threshold of the algorithm,GA is adopted to provide initial pheromone for ACA,and then dual-convergence pheromone feedback mode is applied in ACA to avoid local optimization and parameters dependence.The practical application proves that the algorithm has a remarkable effect on solving the problems of multi-UUT parallel test tasks scheduling and resources configuration.
文摘In light of the high nonlinearity of LuGre friction model, a novel method based on ant colony algorithm(ACA) for identifying the friction parameters of flight simulation servo system is proposed. ACA is a parallelized bionic optimization algorithm inspired from the behavior of real ants, and a kind of positive feedback mechanism is adopted in ACA. On the basis of brief introduction of LuGre friction model, a method for identifying the static LuGre friction parameters and the dynamic LuGre friction parameters using ACA is derived. Finally, this new friction parameter identification scheme is applied to a electric-driven flight simulation servo system with high precision. Simulation and application results verify the feasibility and the effectiveness of the scheme. It provides a new way to identify the friction parameters of LuGre model.