Plant-associated bacteria that inhabit the rhizosphere may influence the plant growth by their contribution to the endogenous pool of phytohormones and by the activity of ACC deaminase to decrease the ethylene concent...Plant-associated bacteria that inhabit the rhizosphere may influence the plant growth by their contribution to the endogenous pool of phytohormones and by the activity of ACC deaminase to decrease the ethylene concentration. The aim of this study was to analyse the root length growth by the promoting effect of indole acetic acid producers phytobacteria with ACC deaminase activity, on inoculated seeds of Lens esculenta as synergistic effect on root elongation. In this study, although the roots of L. esculenta seedlings do not show a significant promotion, these phytobacteria could be recommended to treat plants analyzing their added inoculum to increase plant biomass and retard the effect of ethylene on cultures supplied with Tryptophan and ACC.展开更多
Bacterial endophytes have been shown to improve abiotic and biotic stress responses in plants. Plants growing under harsh conditions along the Oregon Coast could contain bacterial endophytes that improve persistence a...Bacterial endophytes have been shown to improve abiotic and biotic stress responses in plants. Plants growing under harsh conditions along the Oregon Coast could contain bacterial endophytes that improve persistence and growth of grasses in this environment. Thirty-four plants consisting of eight different species were collected along the Oregon coast from four different sites. Bacterial endophytes were isolated from root crown, stem and leaf tissues. A portion of the 16S rRNA ITS regions of each isolate was amplified, sequenced, and used to perform a BLAST search against the nucleotide database collection at National Center for Biotechnology Information. One-hundred and thirty-three different bacterial isolates, ninety-four of which were unique, representing thirty-six different taxonomic groups were found. Over 50% of the total bacteria isolates were in just five taxonomic groups. Pseudomonads were the most predominant bacteria isolated, making up 20.3% of the total isolates, followed by Curtobacterium and Microbacterium, each at 8.2%, Bacillus at 7.5% and Xanthomomas at 6%. Forty-seven percent (17 of 36) of the taxonomic groups contained only a single isolate. Fourteen bacterial isolates from five taxonomic groups, nine of which were from the genus Pseudomonas, were found to have 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, an enzyme associated with improving plant growth under stress. These newly discovered bacterial endophytes will be a valuable biological resource to develop approaches to increase the yield and adaptability of grasses and other crops grown in diverse environments and to meet the challenges associated with an unpredictable climate.展开更多
基金Authors are grateful to the Research Projects:SIP:20131494 of the Secretaría de Investigación y Posgrado del I.P.N.ISITDF/325/11 AREAS PRIORITARIAS-IPN and COFAA-IPN,EDI-IPN,SNI-CONACYT fel-lowships
文摘Plant-associated bacteria that inhabit the rhizosphere may influence the plant growth by their contribution to the endogenous pool of phytohormones and by the activity of ACC deaminase to decrease the ethylene concentration. The aim of this study was to analyse the root length growth by the promoting effect of indole acetic acid producers phytobacteria with ACC deaminase activity, on inoculated seeds of Lens esculenta as synergistic effect on root elongation. In this study, although the roots of L. esculenta seedlings do not show a significant promotion, these phytobacteria could be recommended to treat plants analyzing their added inoculum to increase plant biomass and retard the effect of ethylene on cultures supplied with Tryptophan and ACC.
文摘Bacterial endophytes have been shown to improve abiotic and biotic stress responses in plants. Plants growing under harsh conditions along the Oregon Coast could contain bacterial endophytes that improve persistence and growth of grasses in this environment. Thirty-four plants consisting of eight different species were collected along the Oregon coast from four different sites. Bacterial endophytes were isolated from root crown, stem and leaf tissues. A portion of the 16S rRNA ITS regions of each isolate was amplified, sequenced, and used to perform a BLAST search against the nucleotide database collection at National Center for Biotechnology Information. One-hundred and thirty-three different bacterial isolates, ninety-four of which were unique, representing thirty-six different taxonomic groups were found. Over 50% of the total bacteria isolates were in just five taxonomic groups. Pseudomonads were the most predominant bacteria isolated, making up 20.3% of the total isolates, followed by Curtobacterium and Microbacterium, each at 8.2%, Bacillus at 7.5% and Xanthomomas at 6%. Forty-seven percent (17 of 36) of the taxonomic groups contained only a single isolate. Fourteen bacterial isolates from five taxonomic groups, nine of which were from the genus Pseudomonas, were found to have 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, an enzyme associated with improving plant growth under stress. These newly discovered bacterial endophytes will be a valuable biological resource to develop approaches to increase the yield and adaptability of grasses and other crops grown in diverse environments and to meet the challenges associated with an unpredictable climate.