Allelochemicals represent a class of natural products released by plants as root,leaf,and fruit exudates that interfere with the growth and survival of neighboring plants.Understanding how allelochemicals function to ...Allelochemicals represent a class of natural products released by plants as root,leaf,and fruit exudates that interfere with the growth and survival of neighboring plants.Understanding how allelochemicals function to regulate plant responses may provide valuable new approaches to better control plant function.One such allelochemical,Myrigalone A(MyA)produced by Myrica gale,inhibits seed germination and seedling growth through an unknown mechanism.Here,we investigate MyA using the tractable modelDictyostelium discoideum and reveal that its activity depends on the conserved homolog of the plant ethylenesynthesis protein 1-aminocyclopropane-1-carboxylic acid oxidase(ACO).Furthermore,in silico modeling predicts the direct binding of MyA to ACO within the catalytic pocket.In D.discoideum,ablation of ACO mimics the MyA-dependent developmental delay,which is partially restored by exogenous ethylene,and MyA reduces ethylene production.In Arabidopsis thaliana,MyA treatment delays seed germination,and this effect is rescued by exogenous ethylene.It also mimics the effect of established ACO inhibitors on root and hypocotyl extension,blocks ethylenedependent root hair production,and reduces ethylene production.Finally,in silico binding analyses identify a rangeof highlypotentethylene inhibitorsthatblock ethylene-dependent responseand reduce ethyleneproduction in Arabidopsis.Thus,we demonstrate a molecular mechanism by which the allelochemical MyA reduces ethylene biosynthesis and identify a range of ultrapotent inhibitors of ethylene-regulated responses.展开更多
The purpose of this paper is to investigate the differential responses of flower opening to ethylene in two cut rose cultivars, ‘Samantha’, whose opening process is promoted, and ‘Kardinal’, whose opening process ...The purpose of this paper is to investigate the differential responses of flower opening to ethylene in two cut rose cultivars, ‘Samantha’, whose opening process is promoted, and ‘Kardinal’, whose opening process is inhibited by ethylene. Ethylene production and 1- aminocyclopropane-1-carboxylate (ACC) synthase and oxidase activities were determined first. After ethylene treatment, ethylene production, ACC synthase (ACS) and ACC oxidase (ACO) activities in petals increased and peaked at the earlier stage (stage 3) in ‘Samantha’, and they were much more dramatically enhanced and peaked at the later stage (stage 4) in ‘Kardinal’ than control during vasing. cDNA fragments of three Rh-ACSs and one Rh- ACO genes were cloned and designated as Rh-ACS1, Rh-ACS2, Rh-ACS3 and Rh-ACO1 respectively. Northern blotting analysis revealed that, among three genes of ACS, ethylene-in- duced expression patterns of Rh-ACS3 gene corresponded to ACS activity and ethylene production in both cultivars. A more dramatic accumulation of Rh-ACS3 mRNA was induced by ethylene in ‘Kardinal’ than that of ‘Samantha’. As an ethylene action inhibitor, STS at concentration of 0.2 mmol/L generally inhib-ited the expression of Rh-ACSs and Rh-ACO in both cultivars, although it induced the expression of Rh-ACS3 transiently in ‘Kardinal’. Our results suggests that ‘Kardinal’ is more sensitive to ethylene than ‘Samantha’; and the changes of Rh-ACS3 expression caused by ethylene might be related to the acceleration of flower opening in ‘Samantha’ and the inhibition in ‘Kardinal’. Additional results indicated that three Rh-ACSs genes were differentially associated with flower opening and senescence as well as wounding.展开更多
基金Financial supported by China High Technology (863) Project (2001AA241191)Fund of Nation Natural Science(30370901)fund of doctoral of university from ministry of education P.R.C(20040389009)
基金supported by a PhD studentship funded by BBSRC DTP iCASE in collaboration with Syngenta Ltd.The CRISPR plasmids were kindly supplied by Dr.Yoichiro Kamimura,RIKEN Cell Signaling Dynamics Team,Center for Biosystems Dynamics Research,RIKEN(G90426).
文摘Allelochemicals represent a class of natural products released by plants as root,leaf,and fruit exudates that interfere with the growth and survival of neighboring plants.Understanding how allelochemicals function to regulate plant responses may provide valuable new approaches to better control plant function.One such allelochemical,Myrigalone A(MyA)produced by Myrica gale,inhibits seed germination and seedling growth through an unknown mechanism.Here,we investigate MyA using the tractable modelDictyostelium discoideum and reveal that its activity depends on the conserved homolog of the plant ethylenesynthesis protein 1-aminocyclopropane-1-carboxylic acid oxidase(ACO).Furthermore,in silico modeling predicts the direct binding of MyA to ACO within the catalytic pocket.In D.discoideum,ablation of ACO mimics the MyA-dependent developmental delay,which is partially restored by exogenous ethylene,and MyA reduces ethylene production.In Arabidopsis thaliana,MyA treatment delays seed germination,and this effect is rescued by exogenous ethylene.It also mimics the effect of established ACO inhibitors on root and hypocotyl extension,blocks ethylenedependent root hair production,and reduces ethylene production.Finally,in silico binding analyses identify a rangeof highlypotentethylene inhibitorsthatblock ethylene-dependent responseand reduce ethyleneproduction in Arabidopsis.Thus,we demonstrate a molecular mechanism by which the allelochemical MyA reduces ethylene biosynthesis and identify a range of ultrapotent inhibitors of ethylene-regulated responses.
基金This work was supported by the Nat ional Natural Science Foundation of China(Grant No.30471220).
文摘The purpose of this paper is to investigate the differential responses of flower opening to ethylene in two cut rose cultivars, ‘Samantha’, whose opening process is promoted, and ‘Kardinal’, whose opening process is inhibited by ethylene. Ethylene production and 1- aminocyclopropane-1-carboxylate (ACC) synthase and oxidase activities were determined first. After ethylene treatment, ethylene production, ACC synthase (ACS) and ACC oxidase (ACO) activities in petals increased and peaked at the earlier stage (stage 3) in ‘Samantha’, and they were much more dramatically enhanced and peaked at the later stage (stage 4) in ‘Kardinal’ than control during vasing. cDNA fragments of three Rh-ACSs and one Rh- ACO genes were cloned and designated as Rh-ACS1, Rh-ACS2, Rh-ACS3 and Rh-ACO1 respectively. Northern blotting analysis revealed that, among three genes of ACS, ethylene-in- duced expression patterns of Rh-ACS3 gene corresponded to ACS activity and ethylene production in both cultivars. A more dramatic accumulation of Rh-ACS3 mRNA was induced by ethylene in ‘Kardinal’ than that of ‘Samantha’. As an ethylene action inhibitor, STS at concentration of 0.2 mmol/L generally inhib-ited the expression of Rh-ACSs and Rh-ACO in both cultivars, although it induced the expression of Rh-ACS3 transiently in ‘Kardinal’. Our results suggests that ‘Kardinal’ is more sensitive to ethylene than ‘Samantha’; and the changes of Rh-ACS3 expression caused by ethylene might be related to the acceleration of flower opening in ‘Samantha’ and the inhibition in ‘Kardinal’. Additional results indicated that three Rh-ACSs genes were differentially associated with flower opening and senescence as well as wounding.