Acetaminophen(ACE)is commonly used in analgesic and antipyretic drug,which is hardly removed by traditional wastewater treatment processes.Herein,amorphous Co(OH)_(2)nanocages were explored as peroxymonosulfate(PMS)ac...Acetaminophen(ACE)is commonly used in analgesic and antipyretic drug,which is hardly removed by traditional wastewater treatment processes.Herein,amorphous Co(OH)_(2)nanocages were explored as peroxymonosulfate(PMS)activator for efficient degradation of ACE.In the presence of amorphous Co(OH)_(2)nanocages,100%of ACE removal was reached within 2 min with a reaction rate constant k_(1)=3.68 min 1 at optimum pH 5,which was much better than that of crystallineβ-Co(OH)_(2)and Co_(3)O_(4).Amorphous materials(disorder atom arrangement)with hollow structures possess large specific surface area,more reactive sites,and abundant vacancies structures,which could efficiently facilitate the catalytic redox reactions.The radicals quenching experiment demonstrated that SO_(4)^(·-)radicals dominated the ACE degradation rather than^(·)OH radicals.The mechanism of ACE degradation was elucidated by the an alysis of degradation in termediates and theoretical calculation,indicating that the electrophilic SO_(4)^(·-)and^(·)OH tend to attack the atoms of ACE with high Fukui index(f).Our finding highlights the remarkable advantages of amorphous materials as heterogeneous catalysts in sulfate radicals-based AOPs and sheds new lights on water treatment for the degradation of emerging organic contaminants.展开更多
基金Financial supports from China Postdoctoral Science Foundation (Nos.2019M650007 and 2020M670088)National NaturalScience Foundation of China (Nos.21906001,51721006)the Beijing Nova Program (No. Z19111000110000)
文摘Acetaminophen(ACE)is commonly used in analgesic and antipyretic drug,which is hardly removed by traditional wastewater treatment processes.Herein,amorphous Co(OH)_(2)nanocages were explored as peroxymonosulfate(PMS)activator for efficient degradation of ACE.In the presence of amorphous Co(OH)_(2)nanocages,100%of ACE removal was reached within 2 min with a reaction rate constant k_(1)=3.68 min 1 at optimum pH 5,which was much better than that of crystallineβ-Co(OH)_(2)and Co_(3)O_(4).Amorphous materials(disorder atom arrangement)with hollow structures possess large specific surface area,more reactive sites,and abundant vacancies structures,which could efficiently facilitate the catalytic redox reactions.The radicals quenching experiment demonstrated that SO_(4)^(·-)radicals dominated the ACE degradation rather than^(·)OH radicals.The mechanism of ACE degradation was elucidated by the an alysis of degradation in termediates and theoretical calculation,indicating that the electrophilic SO_(4)^(·-)and^(·)OH tend to attack the atoms of ACE with high Fukui index(f).Our finding highlights the remarkable advantages of amorphous materials as heterogeneous catalysts in sulfate radicals-based AOPs and sheds new lights on water treatment for the degradation of emerging organic contaminants.