Activated carbon fiber/carbon nanotube(ACF/CNT) composites were fabricated by chemical vapor deposition(CVD) process.The effects of pyrolysis temperature on properties of ACF/CNT composites,including BET specific surf...Activated carbon fiber/carbon nanotube(ACF/CNT) composites were fabricated by chemical vapor deposition(CVD) process.The effects of pyrolysis temperature on properties of ACF/CNT composites,including BET specific surface area,mass increment rate and adsorption efficiency for rhodamine B in solution,were investigated by scanning electron microscopy.The results show that the pyrolysis temperature is a key factor affecting the qualities of ACF/CNT composites.The mass increment rate and BET specific surface area sharply decrease with the increase of pyrolysis temperatures from 550 ℃ to 850 ℃ and the minimum diameter of CNTs appears at 750 ℃.The maximum adsorption efficiency of ACF/CNT composites for rhodamine B is obtained at 650 ℃.ACF/CNT composites are expected to be useful in adsorption field.展开更多
The selective catalytic reduction(SCR) of NOx using MnOx and CeO2 supported on viscose-based active carbon fibers(ACF) at 120 ℃~270 ℃ relatively lower than the temperature when using V2O5/TiO2-anatase catalyst was ...The selective catalytic reduction(SCR) of NOx using MnOx and CeO2 supported on viscose-based active carbon fibers(ACF) at 120 ℃~270 ℃ relatively lower than the temperature when using V2O5/TiO2-anatase catalyst was studied.As a result,CeO2/ACF shows a better catalysis than MNOx/ACF,which is not affected by the reaction temperature. NO conversion of 85% is reached with the 10%-CeO2/ACF catalyst at the whole temperature window.Furthermore,a series of MnOx-CeO2/ACF composite catalysts were studied.The results show that the loading method of catalyst affects its activity.展开更多
基金Project(50802115) supported by the National Natural Science Foundation of ChinaProject(2010FJ4075) supported by the Science and Technology Plan of Hunan ProvinceProject(CDJJ-10010205) supported by Changsha University
文摘Activated carbon fiber/carbon nanotube(ACF/CNT) composites were fabricated by chemical vapor deposition(CVD) process.The effects of pyrolysis temperature on properties of ACF/CNT composites,including BET specific surface area,mass increment rate and adsorption efficiency for rhodamine B in solution,were investigated by scanning electron microscopy.The results show that the pyrolysis temperature is a key factor affecting the qualities of ACF/CNT composites.The mass increment rate and BET specific surface area sharply decrease with the increase of pyrolysis temperatures from 550 ℃ to 850 ℃ and the minimum diameter of CNTs appears at 750 ℃.The maximum adsorption efficiency of ACF/CNT composites for rhodamine B is obtained at 650 ℃.ACF/CNT composites are expected to be useful in adsorption field.
文摘The selective catalytic reduction(SCR) of NOx using MnOx and CeO2 supported on viscose-based active carbon fibers(ACF) at 120 ℃~270 ℃ relatively lower than the temperature when using V2O5/TiO2-anatase catalyst was studied.As a result,CeO2/ACF shows a better catalysis than MNOx/ACF,which is not affected by the reaction temperature. NO conversion of 85% is reached with the 10%-CeO2/ACF catalyst at the whole temperature window.Furthermore,a series of MnOx-CeO2/ACF composite catalysts were studied.The results show that the loading method of catalyst affects its activity.
基金supported by the National Natural Science Foundation of China(0976050)Program for New Century Excellent Talents in University,China(07-0457)National Key Technology Research and Development Program of Tianjin,China(09ZCKFSH01900)~~