期刊文献+
共找到88篇文章
< 1 2 5 >
每页显示 20 50 100
Relationship between electrochemical characteristics and SCC of X70 pipeline steel in an acidic soil simulated solution 被引量:13
1
作者 Zhiyong LIU Xiaogang LI +2 位作者 Yingrui ZHANG Cuiwei DU Guoli ZHA 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第1期58-64,共7页
Stress corrosion cracking (SCC) of X70 pipeline steel in simulated solution of the acidic soil in Yingtan in China was investigated using slow strain rate test (SSRT), SEM and potentiodynamic polarization techniqu... Stress corrosion cracking (SCC) of X70 pipeline steel in simulated solution of the acidic soil in Yingtan in China was investigated using slow strain rate test (SSRT), SEM and potentiodynamic polarization technique. Experiment results indicate that X70 steel is highly susceptible to SCC as applied potential reduces, which is manifested in loss of toughness and brittle fracture. Constaat polarization current can detect the occurrence of SCC. The lower the polarization current is the sooner stress corrosion cracking occurs. The SCC mechanisms are different at varying potentials. When potential is higher than open circuit potential, anodic process controls SCC, whereas when potential is far lower than open circuit potential, cathodic process controls SCC, and between these two potential regions, a combined electrochemical process controls the SCC. Stress or strain has a synergistic effect with electrochemical reactions to accelerate the cathodic hydrogen evolution process, which makes the X70 pipeline steel to be more susceptible to SCC. 展开更多
关键词 X70 steel SCC Electrochemical process acidic soil
下载PDF
Effect of deteriorated microstructures on stress corrosion cracking of X70 pipeline steel in acidic soil environment 被引量:11
2
作者 Zhiyong Liu Guoli Zhai Xiaogang Li Cuiwei Du 《Journal of University of Science and Technology Beijing》 CSCD 2008年第6期707-713,共7页
In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures i... In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures in heat affected zone by annealing at 1300 ℃ for 10 min and then, quenching in water; the other was to get different simulating solutions of acidic soil in Yingtan in south- east China. The SCC susceptibilities of X70 pipeline steel before and after quenching in the simulating solutions were analyzed using slow stain rate test (SSRT) and potentiodynamic polarization technique to investigate the SCC electrochemical mechanism of different microstructures further. The results show that SCC appears in the original microstructure and the quenched microstructure as the polarization potential decreases. Hydrogen revolution accelerates SCC of the two tested materials within the range of-850 mV to -1200 mV vs. SCE. Microstructural hardening and grain coarsening also increase SCC. The SCC mechanisms are different, anodic dissolution is the key of causing SCC as the polarization potential is higher than the null current potential, and hydrogen embrittlement will play a more important role to SCC as the polarization potential lower than the null current potential. 展开更多
关键词 X70 steel heat affected zone heat treatment stress corrosion cracking (SCC) acidic soil environment
下载PDF
Differential Expression of Iron Deficiency Responsive Rice Genes under Low Phosphorus and Iron Toxicity Conditions and Association of OsIRO3 with Yield in Acidic Soils 被引量:1
3
作者 Ernieca Lyngdoh NONGBRI Sudip DAS +3 位作者 Karma Landup BHUTIA Aleimo G.MOMIN Mayank RAI Wricha TYAGI 《Rice science》 SCIE CSCD 2023年第1期58-69,共12页
With the hypothesis that iron(Fe) deficiency responsive genes may play a role in Fe toxicity conditions,we studied five such genes OsNAS1,OsNAS3,OsIRO2,OsIRO3 and OsYSL16 across six contrasting rice genotypes for expr... With the hypothesis that iron(Fe) deficiency responsive genes may play a role in Fe toxicity conditions,we studied five such genes OsNAS1,OsNAS3,OsIRO2,OsIRO3 and OsYSL16 across six contrasting rice genotypes for expression under high Fe and low phosphorus(P) conditions,and sequence polymorphism.Genotypes Sahbhagi Dhan,Chakhao Poirieton and Shasharang were high yielders with no bronzing symptom visible under Fe toxic field conditions,and BAM350 and BAM811 were low yielders but did not show bronzing symptoms.Hydroponic screening revealed that the number of crown roots and root length can be traits for consideration for identifying Fe toxicity tolerance in rice genotypes.Fe contents in rice roots and shoots of a high-yielding genotype KMR3 showing leaf bronzing were significantly high.In response to 24 h high Fe stress,the expression levels of OsNAS3 were up-regulated in all genotypes except KMR3.In response to 48 h high Fe stress,the expression levels of OsNAS1 were3-fold higher in tolerant Shasharang,whereas in KMR3,it was significantly down-regulated.Even in response to 7 d excess Fe stress,the transcript abundances of OsIRO2 and OsNAS3 were contrasting in genotypes Shasharang and KMR3.This suggested that the reported Fe deficiency genes had a role in Fe toxicity and that in genotype KMR3 under excess Fe stress,there was disruption of metal homeostasis.Under the 48 h low P conditions,OsIRO2 and OsYSL16 were significantly up-regulated in Fe tolerant genotype Shasharang and in low P tolerant genotype Chakhao Poirieton,respectively.In silico sequence analysis across 3 024 rice genotypes revealed polymorphism for 4 genes.Sequencing across OsIRO3and OsNAS3 revealed nucleotide polymorphism between tolerant and susceptible genotypes for Fe toxicity.Non-synonymous single nucleotide polymorphisms and insertion/deletions(InDels) differing in tolerant and susceptible genotypes were identified.A marker targeting 25-bp InDel in OsIRO3,when run on a diverse panel of 43 rice genotypes and a biparental population,was associated with superior performance for yield under acidic lowland field conditions.This study highlights the potential of one of the vital genes involved in Fe homeostasis as a genic target for improving rice yield in acidic soils. 展开更多
关键词 acidic soil low phosphorus iron toxicity OsNAS1 OsIRO3 RICE YIELD
下载PDF
Sequential Extraction of Aluminum and Iron from Acidic Soils by Chemical Selective Dissolution Methods 被引量:1
4
作者 HEJIZHENG A.VIOLANTE 《Pedosphere》 SCIE CAS CSCD 1998年第1期37-44,共8页
Potassium chloride, Na-pyrophosphate, CuCl2, NH4-oxalate, dithionite-citrate-bicarbonate (DCB) and Na-citrate solutions were employed to extract aluminum (Al) and iron (Fe) sequentially and separately from 15 acidic s... Potassium chloride, Na-pyrophosphate, CuCl2, NH4-oxalate, dithionite-citrate-bicarbonate (DCB) and Na-citrate solutions were employed to extract aluminum (Al) and iron (Fe) sequentially and separately from 15 acidic soils located at the Mangshan Mountains, Hunan Province, China. Many evidences showed that separate pyrophosphate extracted mainly KCI-extractable Al, organo-Al complexes and some inorganic Al compounds, whereas separate CuCl2 extracted KCl-extractable Al and some organo-Al complexes. CuCl2 extracted much less amounts of Al than pyrophosphate did from the soils. Separate oxalate did not extract all KCl-Pyrophosphate- CuCl2 -oxalate sequentially extractable Al and Fe. Also, separate DCB did not extract all KCl- pyrophosphate- CuCl2 -oxalate- DCB sequentially extractable Al. The forms of Al extracted by oxalate and DCB from the soils were majorly noncrystalline. The interlayered materials of 1.4-nm intergrade minerals of the soils were attributed mainly to hydroxy Al polymers. 展开更多
关键词 acidic soil aluminum forms chemical selective dissolution
下载PDF
Suitability of Isotope Kinetic Approach to Assess Phosphorus Status and Bioavailability of Major Acidic Soils in Subtropical China
5
作者 XIONGLIMING J.C.FARDEAU 《Pedosphere》 SCIE CAS CSCD 1997年第2期111-118,共8页
A 32P isotope kinetic approach was used to describe the chemical status and bioavailability of phosphorusin 32 acidic soils from subtropical China. By determining the residual radioactivity rt, in soil solution atdiff... A 32P isotope kinetic approach was used to describe the chemical status and bioavailability of phosphorusin 32 acidic soils from subtropical China. By determining the residual radioactivity rt, in soil solution atdifferent time, t, after introduction of the isotope in an amount of R into the steady soiLwater system, awell-defined isotope kinetic model was established, and upon this model the decrease rate, n, of log(Tt/R)with respect to logt, the mean sojourn time of phosphate ions in solution, the mean exchange rate and themean flux of phosphate ions between soil solid and solution phases were calculated. Other parameters, suchas the exchangeable P within the first minute of isotope exchange (E1), and P in various compartments thatcould be exchanged with solution phosphate ions at different periods of time, were also obtained. For theseacidic soils, the r1/R had a significant correlation with the contents of clay and free Al203 where r1 is theradioactivity in solution 1 minute after introduction of the isotope into the system. Parameter n also hada significant correlation with clay content and a negative correlation with soil pH. E1 values and Cp, theP concentration in soil solution, also significantly correlated with clay and sesquioxide contents of the soils.These indicated that these isotope kinetic parameters were largely infiuenced by P-fixing components of thesoils. For the soils with strong P-fixing ability the E1 values overestimated labile P pools and hence theircorrelations with A values and plant P uptake were not significant. The other isotope kinetic parameters alsohad no significant correlation with plant P uptake. On the other hand, the conventional chemical-extractedP correlated better with plant P uptake. It was concluded that the isotope kinetic method could assess theP chemical status yet it would be inappropriate in predicting plant available P for soils with a high P-fixingability as the problem of an overestimation of soil labile P in these soils was inevitable. 展开更多
关键词 acidic soils BIOAVAILABILITY isotope kinetics PHOSPHORUS
下载PDF
Effects of Combined Application of Reduced Fertilizer and Biogas Manure on Summer Maize Growth and Acidic Soil Improvement
6
作者 Yao SUN Yan WANG Jie DONG 《Agricultural Biotechnology》 CAS 2018年第3期142-145,共4页
[Objectives] A field experiment was carried out with biogas manure replacing partial chemical fertilizer to discuss the effects on growth and development of summer maize and soil environment,so as to provide theoretic... [Objectives] A field experiment was carried out with biogas manure replacing partial chemical fertilizer to discuss the effects on growth and development of summer maize and soil environment,so as to provide theoretical basis for efficient utilization and zero growth of chemical fertilizer. [Methods]The summer maize field experiment was carried out in Muping District,Yantai City,with conventional fertilization as control,and sole application of biogas manure,biogas manure + 80% chemical fertilizer and biogas manure + 60% chemical fertilizer as three treatments. Growth indices,yield and yield components of summer maize and soil nutrient utilization status were determined. [Results] On the basis of reduced fertilizer application,the application of biogas manure could significantly promote growth of summer maize,and its plant height,stem diameter,ear position and dry weight per plant significantly increased compared with the CK. Remarkable yield increasing effect was obtained on summer maize,and among the various treatments,treatment BM + CF80 had the highest yield,which was 19. 91% higher than the CK. Furthermore,the combined application of biogas manure and chemical fertilizer not only could improve soil acidity( soil pH was improved by 0. 12 unit),but also could improve soil rapidly available potassium content and reduce soil alkali-hydrolyzable nitrogen content. [Conclusions]Comprehensively,combined application of biogas manure and 80% of chemical fertilizer is the best for growth and development of summer maize and improvement of soil character. 展开更多
关键词 Biogas manure Summer maize Growth characteristics acidic soil
下载PDF
Growth and mineral nutrient analysis of teak (Tectona grandis) grown on acidic soils in south China 被引量:4
7
作者 Zaizhi Zhou Shichao Liu +2 位作者 Kunnan Liang Huaming Ma Guihua Huang 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第3期503-511,共9页
Teak (Tectona grandis L.f.) is widely planted in the world due to its high market demand, economic, ecological and social value. Its plantations have mostly been established and expanded into sites that are acidic t... Teak (Tectona grandis L.f.) is widely planted in the world due to its high market demand, economic, ecological and social value. Its plantations have mostly been established and expanded into sites that are acidic to severely acidic in southern China. But, there are no available and specific evidence-based nutrient management techniques. To better recognize and understand the relationship between teak tree growth and nutrient content in the foliage and soil and establish nutrient norms are critical to optimally manage these young plantations. We studied the foliar nutrient and soil chemistry in 19 representative teak plantations aged 5-8 years. Regression analysis indicated that the mean annual increment of teak volume was linearly and positively correlated with foliar N, Ca, Fe and B concentrations, with soil base saturation percentage, available P and Zn concentrations, and negatively correlated with soil Al concentration. Only if the Ca and Mg contents in soil were enhanced, could the increase in soil base saturation percentage benefit teak growth. A revised classification of low-and high-yielding stands was established by using a sorting method of principal components over 6 foliar macro and 8 micro elements in a Diagnosis and Recommendation Integrated System (DRIS). Specific DRIS norms for teak plantations in acid soils were derived. The nutrient balance of N, P, K Ca, Mg, Zn, B with Fe or A1, Ca with Mg, and Fe with AI provided a key to promote the growth of teak in acid soils. Meanwhile, soil Zn was also found as a primary trace element that affected teak growth in this study. 展开更多
关键词 Acid soils DRIS diagnosis and norm Mineral nutrient relationship Plant mineral nutrition soil properties TEAK
下载PDF
Amelioration of acidic soil using fy Ash for Mine Revegetation in PostMining Land 被引量:1
8
作者 Akihiro Hamanaka Takashi Sasaoka +1 位作者 Hideki Shimada Shinji Matsumoto 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第3期201-206,共6页
This paper described the use of fy ash for soil amelioration of acidic soils to promote plant growth.In mining sites,acid sulfate soils/rocks,which contain sulfde minerals(e.g.pyrite FeS_(2)),have appeared as a result... This paper described the use of fy ash for soil amelioration of acidic soils to promote plant growth.In mining sites,acid sulfate soils/rocks,which contain sulfde minerals(e.g.pyrite FeS_(2)),have appeared as a result of overburden excavation.The excessively acidic condition inhibits plant growth due to the dissolution of harmful elements,such as Al,Fe,and Mn.Fly ash,an alkaline byproduct of coal combustion generated in thermal power plants is expected to be adopted to ameliorate acidic soils.However,the mixing ratio of fy ash must be considered because excessive addition of fy ash can have a negative impact on plant growth due to its physical/chemical properties.The pot trials using Acacia mangium demonstrate the evolution of plant growth with a 5%–10%addition of fy ash into acidic soil.When the acidic soil has a high potential for metal dissolution,the metal ions leached from the acidic soil are large,making it difcult to improve plant growth due to osmotic and ionic stress.This work suggests that the efects of fy ash on metal ions leached from the soil have to be considered for the amelioration of acidic soil. 展开更多
关键词 Acid soil Coal Ash Metal Accumulation Plant Growth
下载PDF
Cultivar and Soil Fertilizer Treatment Affect Seed Production of Sweet Yellow Yam (<i>Dioscorea dumetorum</i>) on Highly Acidic Soils of the Western Highlands Region of Cameroon
9
作者 Somo Toukam Gabriel Mahbou Godswill Ntsomboh-Ntsefong +2 位作者 Tiokeng Marie Noel Ateko Benoit Nono Emmanuel Youmbi 《American Journal of Plant Sciences》 2021年第9期1387-1409,共23页
The popularization of <i>Dioscorea dumetorum</i> (Dioscoreaceae), a nutritious yam species is still marginal due to constraints such as the low interest of research, poor cultural practices, insufficient a... The popularization of <i>Dioscorea dumetorum</i> (Dioscoreaceae), a nutritious yam species is still marginal due to constraints such as the low interest of research, poor cultural practices, insufficient and expensive seeds, pests, and diseases. The latter pushes producers to use about 50% of their harvest as seed for the next planting season. The lack of a specific fertilizer formulation for yam production on the oxysols of Cameroon is another constraint. This study was aimed at enhancing the availability of quality seeds through the characterization of five yam accessions. One experiment was performed to determine the effect of cultivar and origin of tuber sets on their germination rate. The <span>second concerned the evaluation of cultivars and soil treatment effects on ag</span>ronomic parameters of yam seedlings. Yam cultivars were subjected to nine fertilizer formulations as follows: T0: no fertilizer;T1: mycorrhizal fungi (MF) + 150 g manure + peanut waste;T2: 25 g chemical fertilizer (20.10.10);T3: MF + peanut waste;T4: 16 g chemical fertilizer (12.6.20);T5: 25 g (20.10.10) +100 g CaO + 150 g manure;T6: 100 g CaO + 150 g manure;T7: 20 g tropicote + 2 g DAP (Diammonium phosphate, a reference starter fertilizer coded N18P46) + 100 g CaO + 150 g manure;and T8: mycorrhiza. These treatments were tested in a factorial design. Results show that Ibo sweet 3 and Mabondji sweet white 1 yam accessions were less affected by anthracnose disease on the aerial parts. Guzang 1 showed the best germination rate and yield, making it appropriate for cultivation in the region. Soil treatments, T2, T5, T7 and T8 significantly increased the yield of yam cultivars. Mycorrhiza treatment alone gave a better response to seed weight, indicating the interest of this biofertilizer as a solution for good seedling production. These fertilizer treatments can be recommended to farmers for more seed production with optimum seed weight (300 g). 展开更多
关键词 Dioscorea dumetorum Mini Set Yam Seed Production MYCORRHIZA Fertilizer soil Acidity
下载PDF
Organic acid anions:An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils 被引量:8
10
作者 Zhi Chang Chen Hong Liao 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2016年第11期631-638,共8页
Aluminum (AI) toxicity and phosphorous (P) deficiency are two major limiting factors for plant growth on acidic soils. Thus, the physiological mechanisms for AJ tolerance and P acquisition have been intensively st... Aluminum (AI) toxicity and phosphorous (P) deficiency are two major limiting factors for plant growth on acidic soils. Thus, the physiological mechanisms for AJ tolerance and P acquisition have been intensively studied. A commonly observed trait is that plants have developed the ability to utilize organic acid anions (OAs; mainly malate, citrate and oxalate) to combat AI toxicity and P deficiency. OAs secreted by roots into the rhizosphere can externally chelate Al^3+ and mobilize phosphate (Pi), while OAs synthesized in the cell can internally sequester Al^3+ into the vacuole and release free Pi for metabolism. Molecular mechanisms involved in OA synthesis and transport have been described in detail. Ensuing genetic improvement for AI tolerance and P efficiency through increased OA exudation and/or synthesis in crops has been achieved by transgenic and marker-assisted breeding. This review mainly elucidates the crucial roles of OAs in plant Al tolerance and P efficiency through summarizing associated physiological mechanisms, molecular traits and genetic manipulation of crops. 展开更多
关键词 Organic acid anions Al toxicity P defidency acidic soils
原文传递
Effects of Microbial Fertilizers in Improving Acidic Tobacco-planting Soil and Tobacco Leaf Quality
11
作者 Xia NI Shungang SHEN +13 位作者 Xianyi ZENG Dewen LI Yeming FU Min CHEN Chaokai YU Libing QI Ying-guo RUAN Changchong ZI Haohan GONG Guangjun HU Mengsheng ZHANG Xu ZHANG Shu PENG Hongbing LI 《Agricultural Biotechnology》 CAS 2023年第2期67-72,共6页
[Objectives]This study was conducted to improve acidic soil and enhance the quality of tobacco leaves.[Methods]The effects of different microbial fertilizers on improving acidic tobacco-planting soil and tobacco leaf ... [Objectives]This study was conducted to improve acidic soil and enhance the quality of tobacco leaves.[Methods]The effects of different microbial fertilizers on improving acidic tobacco-planting soil and tobacco leaf quality were investigated through plot experiments.[Results]The application of microbial fertilizers could improve the pH value of acidic soil,and composite microbial agent A showed the best application effect.The application of bio-organic fertilizer was beneficial to improving the contents of available phosphorus and available boron in acidic soil.The application of composite microbial agent A was beneficial to improving the contents of available phosphorus and available potassium in acidic soil,and could promote the growth of tobacco plants and improve the economic traits of flue-cured tobacco and the coordination of chemical components in tobacco leaves.The application of composite microbial agent B led to a downward trend in the content of available boron in acidic soil.The application of composite microbial agent B could promote the absorption of nutrients by tobacco plants,and improve their disease resistance and the quality of tobacco leaves.Due to the differences in functional microorganisms contained,the application effects of different microbial fertilizers in improving acidic tobacco-planting soil and improving tobacco leaf quality varied.Overall,the application of microbial fertilizers could increase soil pH,activate soil nutrients,promote tobacco growth,enhance disease resistance,increase tobacco output value,and improve tobacco quality.Microbial fertilizers have good application prospects in improving acidic soil and improving tobacco quality.[Conclusions]The application of microbial fertilizers to improve acidic tobacco-planting soil can ensure the normal growth and development of tobacco plants and the improvement of tobacco leaf quality,achieving high-quality and sustainable development of Zhaotong tobacco. 展开更多
关键词 Microbial fertilizer Flue-cured tobacco acidic soil Tobacco quality
下载PDF
Nutrient Limiting Factors in Acidic Vegetable Soils 被引量:14
12
作者 YE Xue-Jian Wang Zheng-Yin +1 位作者 Tu Shi-Hua G.SULEWSKI 《Pedosphere》 SCIE CAS CSCD 2006年第5期624-633,共10页
Nutrient limiting factors in acidic soils from vegetable fields of the Chongqing suburbs of China were assessed by employing the systematic approach developed by Agro Services International (ASI) including soil testin... Nutrient limiting factors in acidic soils from vegetable fields of the Chongqing suburbs of China were assessed by employing the systematic approach developed by Agro Services International (ASI) including soil testing, nutrient adsorption study, and pot and field experiments to verify the results of soil testing, with a conventional soil test (CST) used for comparison. The ASI method found the moderately acidic soil (W01) to be N and P deficient; the strongly acidic soil (W04) to be N, K and S deficient; and the slightly acidic soil (W09) to be N, K, S, Cu, Mn, and Zn deficient. The CST method showed that W01 had P, B and Cu deficiencies; W04 had N, P and S deficiencies; and W09 had N, P, S, B, Cu, and Zn deficiencies. There were differences between the two methods. Among the two indicator plants selected, the response of sorghum on the three representative acidic soils was more closely related to the ASI results than that of sweet pepper. 展开更多
关键词 acidic vegetable soil nutrient limiting factor SORGHUM sweet pepper systematic approach
下载PDF
The effect of applied potential on stress corrosion cracking of X80 pipeline steel in acidic soil containing sulfate-reducing bacteria
13
作者 HE JianYu XIE Fei +3 位作者 ZHAO Yang GUO DaCheng WANG Dan LI JunChi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第10期2837-2849,共13页
Electrochemical experiments,slow strain rate tensile testing(SSRT),and scanning electron microscopy were used to investigate the effect of various applied potentials on the stress corrosion cracking(SCC)of X80 pipelin... Electrochemical experiments,slow strain rate tensile testing(SSRT),and scanning electron microscopy were used to investigate the effect of various applied potentials on the stress corrosion cracking(SCC)of X80 pipeline steel in acidic soil containing sulfate-reducing bacteria(SRB).The results demonstrated that when the anodic potential was applied,X80 steel exhibited sensitivity to SCC,which was attributed to anodic dissolution.The SCC sensitivity initially decreased,but then increased with a negative shift in the applied potential.At-1200 mV,SCC was the most sensitive,which corresponded to the substantial cathodic polarisation and toxic impact of SRB,which increased the risk of hydrogen embrittlement.At-850 mV,the SCC sensitivity was the lowest because cathodic polarisation suppressed anodic dissolution.The experimental results can contribute to the prevention and management of SCC in operational pipelines. 展开更多
关键词 applied potential acid soil SCC sulfate-reducing bacteria
原文传递
Effect of Saline Water on Soil Acidity, Alkalinity and Nutrients Leaching in Sandy Loamy Soil in Rwamagana Bella Flower Farm, Rwanda
14
作者 Abel Mwubahaman Wali Umaru Garba +3 位作者 Hussein Bizimana Jean de Dieu Bazimenyera Eric Derrick Bugenimana Jean Nepomuscene Nsengiyumva 《Agricultural Sciences》 2024年第1期15-35,共21页
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration... The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels. 展开更多
关键词 NUTRIENTS LEACHING Saline Water soil Acidity soil Alkalinity
下载PDF
Calcium-Magnesium Ca/Mg Ratios and Their Agronomic Implications for the Optimization of Phosphate Fertilization in Rainfed Rice Farming on Acidic Ferralsol in the Forest Zone of Ivory Coast
15
作者 Fernand G. Yao Brahima Kone +7 位作者 Franck M. L. Bahan Kouadio Amani Jean L. Essehi Mamadou B. Ouattara Konan E. B. Dibi Brou Kouame François Lompo Albert Yao-Kouame 《Open Journal of Soil Science》 2024年第1期81-96,共16页
This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosph... This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosphorus (P) nutrition of rice on these acidic soils, where this nutrient constitutes a limiting factor for agricultural production. Three (3) pot trials were conducted in Adiopodoumé in the forested south of Côte d’Ivoire. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg Ca ha<sup>−1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg Mg ha<sup>−1</sup>) were evaluated on the response of NERICA 5 rice at doses 0, 25, 50 and 75 kg P ha<sup>−1</sup> of natural phosphate from Togo, applied only once at the start of the experiment. Additional fertilizers of nitrogen (N) (100 kg N ha<sup>−1</sup>) and potassium (K) (50 kg KCl ha<sup>−1</sup>) were added to each of the tests in a split-plot device. The test results revealed a paddy production potential of approximately 3 to 5 t⋅ha<sup>−1</sup> for NERICA 5 on an acidic soil, under the effect of the interaction of P, Ca and Mg. The quadratic response of rice yield to the doses of these fertilizers would be more dependent on their balance, itself influenced by Ca nutrition. For the sustainability and maintenance of rice production in agro-ecology studied, it was recommended doses of 38 kg Ca ha<sup>−1</sup>, 34 kg Mg ha<sup>−1</sup> in a Ca/Mg ratio (1/1) with intakes of 41 kg P ha<sup>−1</sup>, overall in a ratio 1/1/1 (P/Ca/Mg) more favorable to the availability of free iron considered a guiding element of mineral nutrition. Thus, these promising results should be confirmed in a real environment for better management of the fertilization of rice cultivated on acidic plateau soils in Côte d’Ivoire. 展开更多
关键词 soil Acidity Ca/Mg Ratios Phosphate Fertilization Rice Growing Ivory Coast
下载PDF
Decreased Soil Nitrification Rate with Addition of Biochar to Acid Soils 被引量:2
16
作者 Shiyu LI Xiangshu DONG +2 位作者 Dandan LIU Li LIU Feifei HE 《Agricultural Science & Technology》 CAS 2017年第10期1932-1934,共3页
This study was conducted to investigate the effects of mixed biochar on the nitrification rate in acidic soils. A15 N tracer experiment with(15 NH4)2 SO4 was conducted to determine the nitrification rates of 4 acidic ... This study was conducted to investigate the effects of mixed biochar on the nitrification rate in acidic soils. A15 N tracer experiment with(15 NH4)2 SO4 was conducted to determine the nitrification rates of 4 acidic agricultural soils with p H 4.03-6.02 in Yunnan Province, Southern China. The accumulation of15 N-NO3-and nitrification rates decreased with the addition of biochar at the end of incubation, suggesting that biochar could be a nitrification inhibitor in acidic fertilized soil. Nitrification rates in soil with p H 4.03 were evidently lower than those in soil with p H 4.81-6.02 with or without biochar. Decreased nitrification rates were detected in the acidic soils with biochar. Soil p H controlled nitrification more than biochar in certain strongly acidic soils. 展开更多
关键词 Nitrification rate BIOCHAR 15N tracer acidic soil
下载PDF
Role of Low-Molecule-Weight Organic Acids and Their Salts in Regulating Soil pH 被引量:6
17
作者 LI Zhi-An ZOU Bi XIA Han-Ping DING Yong-Zhen TAN Wan-Neng FU Sheng-Lei 《Pedosphere》 SCIE CAS CSCD 2008年第2期137-148,共12页
The process of organic materials increasing soil pH has not yet been fully understood. This study examined the role of cations and organic anions in regulating soil pH using organic compounds. Calcareous soil, acid so... The process of organic materials increasing soil pH has not yet been fully understood. This study examined the role of cations and organic anions in regulating soil pH using organic compounds. Calcareous soil, acid soil, and paddy soil were incubated with different simple organic compounds, pH was determined periodically and CO2 emission was also measured. Mixing organic acids with the soil caused an instant decrease of soil pH. The magnitude of pH decrease depended on the initial soil acidity and dissociation degree of the acids. Decomposition of organic acids could only recover the soil pH to about its original level. Mixing organic salts with soil caused an instant increase of soil pH. Decomposition of organic salts of sodium resulted in a steady increase of soil pH, with final soil pH being about 2.7-3.2 pH units over the control. Organic salts with the same anions (citrate) but different cations led to different magnitudes of pH increase, while those having the same cations but different anions led to very similar pH increases. Organic salts of sodium and sodium carbonate caused very similar pH increases of soil when they were added to the acid soil at equimolar concentrations of Na^+. The results suggested that cations played a central role in regulating soil pH. Decarboxylation might only consume a limited number of protons. Conversion of organic salts into inorganic salts (carbonate) was possibly responsible for pH increase during their decomposition, suggesting that only those plant residues containing high excess base cations could actually increase soil pH. 展开更多
关键词 acid soil CATION DECARBOXYLATION organic compounds soil acidity
下载PDF
Chemical Species of Aluminum Ions in Acid Soils *1 被引量:8
18
作者 XURENKOU JIGUOLIANG 《Pedosphere》 SCIE CAS CSCD 1998年第2期127-133,共7页
Soil samples collected from several acid soils in Guangdong, Fujian, Zhejiang and Anhui provinces of the southern China were employed to characterize the chemical species of aluminum ions in the soils. The proportio... Soil samples collected from several acid soils in Guangdong, Fujian, Zhejiang and Anhui provinces of the southern China were employed to characterize the chemical species of aluminum ions in the soils. The proportion of monomeric inorganic Al to total Al in soil solution was in the range of 19% to 70%, that of monomeric organic Al (Al OM) to total Al ranged from 7.7% to 69%, and that of the acid soluble Al to total Al was generally smaller and was lower than 20% in most of the acid soils studied. The Al OM concentration in soil solution was positively correlated with the content of dissolved organic carbon (DOC) and also affected by the concentration of Al 3+ . The complexes of aluminum with fluoride (Al F) were the predominant forms of inorganic Al, and the proportion of Al F complexes to total inorganic Al increased with pH. Under strongly acid condition, Al 3+ was also a major form of inorganic Al, and the proportion of Al 3+ to total inorganic Al decreased with increasing pH. The proportions of Al OH and Al SO 4 complexes to total inorganic Al were small and were not larger than 10% in the most acid soils. The concentration of inorganic Al in solution depended largely on pH and the concentration of total F in soil solution. The concentrations of Al OM, Al 3+ ,Al F and Al OH complexes in topsoil were higher than those in subsoil and decreased with the increase in soil depth. The chemical species of aluminum ions were influenced by pH. The concentrations of Al OM, Al 3+ , Al F complexes and Al OH complexes decreased with the increase in pH. 展开更多
关键词 acid soil aluminum ion chemical species
下载PDF
Soil Quality Assessment of Acid Sulfate Paddy Soils with Different Productivities in Guangdong Province,China 被引量:20
19
作者 LIU Zhan-jun ZHOU Wei +5 位作者 SHEN Jian-bo LI Shu-tian LIANG Guo-qing WANG Xiu-bin SUN Jing-wen AI Chao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第1期177-186,共10页
Land conversion is considered an effective measure to ensure national food security in China, but little information is available on the quality of low productivity soils, in particular those in acid sulfate soil regi... Land conversion is considered an effective measure to ensure national food security in China, but little information is available on the quality of low productivity soils, in particular those in acid sulfate soil regions. In our study, acid sulfate paddy soils were divided into soils with high, medium and low levels based on local rice productivity, and 60 soil samples were collected for analysis. Twenty soil variables including physical, chemical and biochemical properties were determined. Those variables that were significantly different between the high, medium and low productivity soils were selected for principal component analysis, and microbial biomass carbon (MBC), total nitrogen (TN), available silicon (ASi), pH and available zinc (AZn) were retained in the minimum data set (MDS). After scoring the MDS variables, they were integrated to calculate a soil quality index (SQI), and the high, medium and low productivity paddy soils received mean SQI scores of 0.95, 0.83 and 0.60, respectively. Low productivity paddy soils showed worse soil quality, and a large discrepancy was observed between the low and high productivity paddy soils. Lower MBC, TN, ASi, pH and available K (AK) were considered as the primary limiting factors. Additionally, all the soil samples collected were rich in available P and AZn, but deficient in AK and ASi. The results suggest that soil AK and ASi deficiencies were the main limiting factors for all the studied acid sulfate paddy soil regions. The application of K and Si on a national basis and other sustainable management approaches are suggested to improve rice productivity, especially for low productivity paddy soils. Our results indicated that there is a large potential for increasing productivity and producing more cereals in acid sulfate paddy soil regions. 展开更多
关键词 soil quality assessment acid sulfate paddy soil soil quality index different productivity
下载PDF
Effects of Multiple Soil Conditioners on a Mine Site Acid Sulfate Soil for Vetiver Growth 被引量:6
20
作者 LINChu-Xia LONGXin-Xian +3 位作者 XUSong-Jun CHUCheng-Xing MAIShao-Zhi JIANGDian 《Pedosphere》 SCIE CAS CSCD 2004年第3期371-378,共8页
A pot experiment was conducted to investigate the effects of various soil treatments on the growth of vetiver grass ( Vetiveria zizanioides (L.) Nash) with the objective of formulating appropriate soil media for use i... A pot experiment was conducted to investigate the effects of various soil treatments on the growth of vetiver grass ( Vetiveria zizanioides (L.) Nash) with the objective of formulating appropriate soil media for use in sulfide-bearing mined areas. An acidic mine site acid sulfate soil (pH 2.8) was treated with different soil conditioner formula including hydrated lime, red mud (bauxite residues), zeolitic rock powder, biosolids and a compound fertilizer. Soils treated with red mud and hydrated lime corrected soil acidity and reduced or eliminated metal toxicity enabling the establishment of vetiver grass.Although over-liming affected growth, some seedlings of vetiver survived the initial strong alkaline conditions. Addition of appropriate amounts of zeolitic rock powder also enhanced growth, but over-application caused detrimental effects. In this experiment, soil medium with the best growth performance of vetiver was 50 g of red mud, 10 g of lime, 30 g of zeolitic rock powder and 30 g of biosolids with 2000 g of mine soils (100% survival rate with the greatest biomass and number of new shoots), but adding a chemical fertilizer to this media adversely impacted plant growth. In addition, a high application rate of biosolids resulted in poorer growth of vetiver, compared to a moderate application rate. 展开更多
关键词 heavy metals mine site acid sulfate soils soil conditioners soil pH vetiver grass
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部