In this study,we employed a non-invasive approach based on the collisional radiative(CR)model and optical emission spectroscopy(OES)measurements for the characterization of gas tungsten arc welding(GTAW)discharge and ...In this study,we employed a non-invasive approach based on the collisional radiative(CR)model and optical emission spectroscopy(OES)measurements for the characterization of gas tungsten arc welding(GTAW)discharge and quantification of Zn-induced porosity during the GTAW process of Fe–Al joints.The OES measurements were recorded as a function of weld current,welding speed,and input waveform.The OES measurements revealed significant line emissions from Zn-I in 460–640 nm and Ar-I in 680–800 nm wavelength ranges in all experimental settings.The OES coupled CR model approach for Zn-I line emission enabled the simultaneous determination of both essential discharge parameters i.e.electron temperature and electron density.Further,these predictions were used to estimate the Zn-induced porosity using OES-actinometry on Zn-I emission lines using Ar as actinometer gas.The OES-actinometry results were in good agreement with porosity data derived from an independent approach,i.e.x-ray radiography images.The current study shows that OES-based techniques can provide an efficient route for real-time monitoring of weld quality and estimate porosity during the GTAW process of dissimilar metal joints.展开更多
An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid b...An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid barrier-jet was shown to generate uniform discharge with a lower breakdown voltage and a relatively low gas temperature varying from 390 K to 440 K, even when the vol.% oxygen in argon was up to 6%. Utilizing the actinometry method, the concentration of atomic oxygen was estimated to be about in an orders of magnitude of 10^17 cm^-3. The argon/oxygen plasma jet was then employed to clean out heat transfer oil, with a maximum cleaning rate of 0.1 mm/s achieved.展开更多
Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a c...Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2~) is also added in the mixture in order to collect OH(A- X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09× 1017+ 0.2×1017 cm-3. This is in very good agreement with the TALIF measurement, which is equal to 2.0×101T cm-3.展开更多
Optical emission spectroscopic measurement of trace rare gas is carried out to determine the density of nitrogen (N) atom, in a nitrogen plasma, as a function of filling pressure and RF power applied. 2% of argon, u...Optical emission spectroscopic measurement of trace rare gas is carried out to determine the density of nitrogen (N) atom, in a nitrogen plasma, as a function of filling pressure and RF power applied. 2% of argon, used as an actinometer, is mixed with nitrogen. In order to normalize the changes in the excitation cross section and electron energy distribution function at different operational conditions, the Ar-I emission line at 419.83 nm is used, which is of nearly the same excitation efficiency coefficient as that of the nitrogen emission line at 493.51 nm. It is observed that the emission intensity of the selected argon and atomic nitrogen lines increases with both pressure and RF power, as does the nitrogen atomic density.展开更多
Measurement of the oxygen dissociation fraction in RF low pressure oxygen/argon plasma using optical emission spectrometry is presented. The oxygen dissociation fraction and its evolutions as functions of operational ...Measurement of the oxygen dissociation fraction in RF low pressure oxygen/argon plasma using optical emission spectrometry is presented. The oxygen dissociation fraction and its evolutions as functions of operational parameters were determined using argon as the actinometer. At a pressure of 30 Pa, the oxygen dissociation fraction decreased from 13.4% to 9.5% as the input power increased from 10 W to 70 W. At an input power of 50 W, the oxygen dissociation fraction decreased from 12.3% to 7.7% when the gas pressure increased from 10 Pa to 40 Pa. The influences of operational parameters on the generation of atomic oxygen were also discussed.展开更多
基金the Ministry of Human Resources and Development(MHRD),Government of India,for providing HTRA fellowshipthe support by the SERB,India,for listed Grants(Nos.CRG/2018/000419,CVD/2020/000458,and SB/S2/RJN-093/2015)+1 种基金Core Research Grant,India(No.CRG/2020/005089)IIT Tirupati,India(No.MEE/18-19/008/NFSG/DEGA)。
文摘In this study,we employed a non-invasive approach based on the collisional radiative(CR)model and optical emission spectroscopy(OES)measurements for the characterization of gas tungsten arc welding(GTAW)discharge and quantification of Zn-induced porosity during the GTAW process of Fe–Al joints.The OES measurements were recorded as a function of weld current,welding speed,and input waveform.The OES measurements revealed significant line emissions from Zn-I in 460–640 nm and Ar-I in 680–800 nm wavelength ranges in all experimental settings.The OES coupled CR model approach for Zn-I line emission enabled the simultaneous determination of both essential discharge parameters i.e.electron temperature and electron density.Further,these predictions were used to estimate the Zn-induced porosity using OES-actinometry on Zn-I emission lines using Ar as actinometer gas.The OES-actinometry results were in good agreement with porosity data derived from an independent approach,i.e.x-ray radiography images.The current study shows that OES-based techniques can provide an efficient route for real-time monitoring of weld quality and estimate porosity during the GTAW process of dissimilar metal joints.
基金supported by National Natural Science Foundation of China (Nos.10775026, 50537020, 50528707)
文摘An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid barrier-jet was shown to generate uniform discharge with a lower breakdown voltage and a relatively low gas temperature varying from 390 K to 440 K, even when the vol.% oxygen in argon was up to 6%. Utilizing the actinometry method, the concentration of atomic oxygen was estimated to be about in an orders of magnitude of 10^17 cm^-3. The argon/oxygen plasma jet was then employed to clean out heat transfer oil, with a maximum cleaning rate of 0.1 mm/s achieved.
文摘Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2~) is also added in the mixture in order to collect OH(A- X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09× 1017+ 0.2×1017 cm-3. This is in very good agreement with the TALIF measurement, which is equal to 2.0×101T cm-3.
基金supported by the Higher Education Commission (HEC) of Pakistan. G. MURTAZA and S.S. HUSSAINthe financial support of HEC in their doctoral studies
文摘Optical emission spectroscopic measurement of trace rare gas is carried out to determine the density of nitrogen (N) atom, in a nitrogen plasma, as a function of filling pressure and RF power applied. 2% of argon, used as an actinometer, is mixed with nitrogen. In order to normalize the changes in the excitation cross section and electron energy distribution function at different operational conditions, the Ar-I emission line at 419.83 nm is used, which is of nearly the same excitation efficiency coefficient as that of the nitrogen emission line at 493.51 nm. It is observed that the emission intensity of the selected argon and atomic nitrogen lines increases with both pressure and RF power, as does the nitrogen atomic density.
基金supported by the Beijing Municipal Education Commission of China(No.KM201010015005)Beijing Key Laboratory of Printing & Packaging Materials and Technology of Beijing Institute of Graphic Communication of China(No.KF201005)
文摘Measurement of the oxygen dissociation fraction in RF low pressure oxygen/argon plasma using optical emission spectrometry is presented. The oxygen dissociation fraction and its evolutions as functions of operational parameters were determined using argon as the actinometer. At a pressure of 30 Pa, the oxygen dissociation fraction decreased from 13.4% to 9.5% as the input power increased from 10 W to 70 W. At an input power of 50 W, the oxygen dissociation fraction decreased from 12.3% to 7.7% when the gas pressure increased from 10 Pa to 40 Pa. The influences of operational parameters on the generation of atomic oxygen were also discussed.