Regarding the spatial profile extraction method of a multi-field co-simulation dataset,different extraction directions,locations,and numbers of profileswill greatly affect the representativeness and integrity of data....Regarding the spatial profile extraction method of a multi-field co-simulation dataset,different extraction directions,locations,and numbers of profileswill greatly affect the representativeness and integrity of data.In this study,a multi-field co-simulation data extractionmethod based on adaptive infinitesimal elements is proposed.Themultifield co-simulation dataset based on related infinitesimal elements is constructed,and the candidate directions of data profile extraction undergo dimension reduction by principal component analysis to determine the direction of data extraction.Based on the fireworks algorithm,the data profile with optimal representativeness is searched adaptively in different data extraction intervals to realize the adaptive calculation of data extraction micro-step length.The multi-field co-simulation data extraction process based on adaptive microelement is established and applied to the data extraction process of the multi-field co-simulation dataset of the sintering furnace.Compared with traditional data extraction methods for multi-field co-simulation,the approximate model constructed by the data extracted from the proposed method has higher construction efficiency.Meanwhile,the relative maximum absolute error,root mean square error,and coefficient of determination of the approximationmodel are better than those of the approximation model constructed by the data extracted from traditional methods,indicating higher accuracy,it is verified that the proposed method demonstrates sound adaptability and extraction efficiency.展开更多
A kind of construction truck model is built in Adams based on multi-body dynamic theory. The rigid and elastic wheels of tire-soil contact models are proposed based on the Bekker pressure model and the Jonasi shear so...A kind of construction truck model is built in Adams based on multi-body dynamic theory. The rigid and elastic wheels of tire-soil contact models are proposed based on the Bekker pressure model and the Jonasi shear soil model, and they are described in the form of S-function to enhance the calculation efficiency and simulation accuracy. Finally, the interaction of truck and soil is simulated by Adams-Maflab co-simulation to study the influence of soft terrain on the ride comfort of vehicles. The co-simulation results reveal that the terrain properties have a great influence on the ride comfort of vehicles as well as driving speed, road roughness and cargo weight. This co-simulation model is convenient for adding the factor of terrain deformation to the analysis of vehicle ride comfort. It can also be used to optimize suspension system parameters especially for off-road vehicles.展开更多
In order to design an effective hydraulic motor speed control system, Matlab_Simiulink and AMESim co-simulation technology is adopted to establish more accurate model and reflect the actual system. The neural...In order to design an effective hydraulic motor speed control system, Matlab_Simiulink and AMESim co-simulation technology is adopted to establish more accurate model and reflect the actual system. The neural network proportion-integration-differentiation (PID) control parameters on-line adjustment is utilized to improve system accuracy, celerity and stability. Simulation results indicate that with the control system proposed in this paper, the system deviation is reduced, therefore accuracy is improved; response speed for step signal and sinusoidal signal gets faster, thus acceleration is rapidly improved; and the system can be restored to the control value in case of interfering, so stability is improved.展开更多
Under high-level earthquakes,bridge piers and bearings are prone to be damaged and the elastoplastic state of bridge structural components is easily accessible in the train-track-bridge interaction(TTBI)system.Conside...Under high-level earthquakes,bridge piers and bearings are prone to be damaged and the elastoplastic state of bridge structural components is easily accessible in the train-track-bridge interaction(TTBI)system.Considering the complexity and structural non-linearity of the TTBI system under earthquakes,a single software is not adequate for the coupling analysis.Therefore,in this paper,an interactive method for the TTBI system is proposed by combining the multi-body dynamics software Simpack and the seismic simulation software OpenSees based on the Client-Server architecture,which takes full advantages of the powerful wheel-track contact analysis capabilities of Simpack and the sophisticated nonlinear analysis capabilities of OpenSees.Based on the proposed Simpack and OpenSees co-simulating train-track-bridge(SOTTB)method,a single-span bridge analysis under the earthquake was conducted and the accuracy of co-simulation method was verified by comparing it with results of the finite element model.Finally,the TTBI model is built utilizing the SOTTB method to further discuss the running safety of HST on multi-span simply supported bridges under earthquakes.The results show that the SOTTB method has the advantages of usability,high versatility and accuracy which can be further used to study the running safety of HST under earthquakes with high intensities.展开更多
In order to observe the change and fluctuation in flow and pressure of a hydraulic quadruped robot's hydraulic system when the robot walks on trot gait,a co-simulation method based on ADAMS and AMESim is proposed. Fi...In order to observe the change and fluctuation in flow and pressure of a hydraulic quadruped robot's hydraulic system when the robot walks on trot gait,a co-simulation method based on ADAMS and AMESim is proposed. Firstly,the change rule in each swing angle of the hydraulic quadruped robot's four legs is analyzed and converted to the displacement change of the hydraulic cylinder by calculating their geometric relationship.Secondly,the robot's dynamic model is built in ADAMS and its hydraulic and control system models are built in AMESim. The displacement change of the hydraulic cylinder in the hydraulic system is used as the driving function of the dynamics model in ADAMS,and the driving force of the dynamics model is used as the loads of the hydraulic system in AMESim. By introducing the PID closed-loop control in the control system,the co-simulation between hydraulic system and mechanical system is implemented. Finally,the curve of hydraulic cylinders' loads,flow and pressure are analyzed and the results show that they fluctuate highly in accordance with the real situation. The study provides data support for the development of a hydraulic quadruped robot's physical prototype.展开更多
To study the durability of a passenger car, this work investigates numerical simulation techniques. The investigations are based on an explicit implicit approach in which substructure techniques are used to reduce the...To study the durability of a passenger car, this work investigates numerical simulation techniques. The investigations are based on an explicit implicit approach in which substructure techniques are used to reduce the simulation time, allowing full vehicle dynamic analyses to be performed on a timescale that is dif cult or impossible with the conventional nite element model (FEM). The model used here includes all necessary nonlinearities in order to maintain accuracy. All key components of the car structure are modeled with deformable materials. Tire road interactions are modeled in the explicit package with contact-impact interfaces with arbitrary frictional and geometric properties. Key parameters of the responses of the car driven on six different kinds of test road surfaces are examined and compared with experimental values. It can be concluded that the explicit implicit co-simulation techniques used here are ef cient and accurate enough for engineering purposes. This paper also discusses the limitations of the proposed method and outlines possible improvements for future work.展开更多
Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the p...Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the process of evaluating the performance of an algorithm for a CPPS can be affected by the physical target characteristics and real communication conditions.To address this potential problem,a testbed with controller hardware-in-the-loop(CHIL)is proposed in this paper.On the basis of a power grid simulation conducted using the real-time simulator RT-LAB developed by the company OPAL-RT,along with a communication network simulation developed with OPNET,multiple distributed controllers were developed with hardware devices to directly collect the real-time operating data of the power system model in RT-LAB and provide local control.Furthermore,the communication between neighboring controllers was realized using the cyber system modelin OPNET with an Ethernet interface.The hardware controllers produced a real-world control behavior instead of a digital simulation,and precisely simulated the dynamic features of a CPPS with high speed.A classic cooperative control case for active power output was studied to explain the integrated simulation process and validate the effectiveness of the co-simulation testbed.展开更多
Based on the characteristics of integrated virtual prototype technology, the mechanical system sub-model, the hydraulic system sub-model and the control system sub-model of a forging manipula- tor system have been bui...Based on the characteristics of integrated virtual prototype technology, the mechanical system sub-model, the hydraulic system sub-model and the control system sub-model of a forging manipula- tor system have been built using a variety of software, and a forging manipulator mtrltidisciplinary co- simulation model has been also built using a method of simulation models interface. Then the simu- lation and experiment are finished, and the result of the experiment is in good agreement with the re- sult of the simulation. It shows that the co-simulation model established can simulate accurately pa- rameter changes in real time during the moving of the forging manipulator such as displacement, ve- locity and pressure flow, which is of important significance for the optimized design of the forging manipulator system to establish the models.展开更多
The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision character...The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision characteristics, and the data transfer between the different models was accomplished by the integration interface between different software. Consequently the virtual experimental platform for the multi-disciplinary co-simulation was established. A co-simulation study of the mechanical-hydraulic-control coupling system of the ITER tractor was carried out. The synchronization servo control of parallel hydraulic cylinders was implemented, and the tracking control of the preconcerted trajectory of the hydraulic cylinders was realized on the established experimental platform. This paper presents the optimization design and technology rebuilding for the complicated coupling system with its theoretic foundation and co-simulation virtual experimental platform.展开更多
We reversely analyzed the energy management strategy (EMS) for a single-shaft parallel hybrid electric vehicle (HEV), and build a forward co-simulation platform based on Cruise and Matlab. The vehicle dynamics mod...We reversely analyzed the energy management strategy (EMS) for a single-shaft parallel hybrid electric vehicle (HEV), and build a forward co-simulation platform based on Cruise and Matlab. The vehicle dynamics model is built with Cruise, and control model is set up with Matlab/Simulink environment. The data between the two models are transferred by the Matlab API interface in Cruise. After mechanical and signal connections are completed, we establish the computing tasks and take the simulations of vehicle' s power performance, economy, and emission performance. The simulation results match the actual measurement results, which show that the co-simulation platform is correct and feasible. The platform can be used not only for a basic simulation platform to optimize further EMS, but also for the development of actual control system.展开更多
A hardware-software co-simulation method for system on chip (SOC) design is discussed. It is based on an instruction set simulator (ISS) and an event-driven hardware simulator, and a bus interface model that is descri...A hardware-software co-simulation method for system on chip (SOC) design is discussed. It is based on an instruction set simulator (ISS) and an event-driven hardware simulator, and a bus interface model that is described in C language provides the interface between the two. The bus interface model and the ISS are linked into a singleton program--the software simulator, which communicate with the hardware simulator through Windows sockets. The implementation of the bus interface model and the synchronization between hardware and software simulator are discussed in detail. Co-simulation control of the hardware simulator is also discussed.展开更多
Research on a servo tracking system mounted with a small arm for robot fighting platform based on multi-body system dynamics and intelligent control theory is presented.A multi-body dynamic model which can accurately ...Research on a servo tracking system mounted with a small arm for robot fighting platform based on multi-body system dynamics and intelligent control theory is presented.A multi-body dynamic model which can accurately express dynamic performances of the system is built in ADAMS.In addition,an intelligent PID control model is built with MATLAB/Simulink,and the two models are integrated and co-simulated by the interface of ADAMS/Controls.Simulation experiments indicate that co-simulation technique used for design of the servo tracking system mounted with a small arm can effectively improve its design efficiency,and can also provide theoretical bases for the motion control and performance improvement of the servo tracking system mounted with a small arm.展开更多
In order to analyze the energy consumption of wheel loader during working process, a three-dimensional(3D) model of wheel loader is established by Pro/E software, and it is imported into the software SimulationX tob...In order to analyze the energy consumption of wheel loader during working process, a three-dimensional(3D) model of wheel loader is established by Pro/E software, and it is imported into the software SimulationX tobuild the kinetic model of the whole wheel loader. Meanwhile, the simulation model of hydraulic system is builtby the same software. By integrating the simulation model of hydraulic system with the kinetic model, the co-sim-ulation model of wheel loader could be achieved. The precision of co-simulation model of the working device isverified through the comparison between simulation results and test results. The testing results show that, undernegative loading condition, the energy loss in multi-way valve accounts for about 52%. The important energy lossin loader's working hydraulic system using constant displacement pump is the large throttling loss of multi-wayvalves. This study provides a reference for designing of a more energy-efficient hydaulic system of wheel loader.展开更多
Misalignment is one of the most common faults for the diesel engine.In order to eliminate the misalignment fault of the diesel engine in the process of operation,a targeting self-recovery regulation system is construc...Misalignment is one of the most common faults for the diesel engine.In order to eliminate the misalignment fault of the diesel engine in the process of operation,a targeting self-recovery regulation system is constructed by using a movable base and displacement sensors.Misalignment is monitored and detected in real time,the value of misalignment is calculated rapidly and accurately,andintelligent decision is made.Then,the base is moved reversely with a definite target to drive the shaft to translate or rotate,so that the shafts can be recovered to alignment online.A co-simulation model for the self-recovery system is established which consists of a dynamic model of the crankshaft system and control model.The self-recovery regulation process of misalignment is simulated.The simulation results show that the system can accurately calculate the misalignment values,with an error of less than 5%,and can automatically eliminate the misalignment fault of the diesel engine online.The research results provide theoretical support for the self-recovery regulation of misalignment fault,and due to the universality of structure and principle,the self-recovery system is not only suitable for diesel engine,but also for other rotating machineries.展开更多
Based on multi-commercial finite element analysis (FEA) software co-simulation calculating method, the electromagnetic system model was built for solving static and dynamic characteristics of a clap-type rely. Using t...Based on multi-commercial finite element analysis (FEA) software co-simulation calculating method, the electromagnetic system model was built for solving static and dynamic characteristics of a clap-type rely. Using the Fortran programming language, the solving of differential equation and the calculating of electromagnetic torque interpolation was realized, therefore the MEM coupling system static/dynamic characteristics of the relay was obtained. The validity and accuracy of this method has been confirmed by results of experiments.The conclusions which obtained are valuable in optimizing the clap-type rely production.展开更多
A virtual thermal test system was built through the co-simulation using Simulink and Comsol to realize the complete virtualization of the thermal test.Using the co-simulation technology,comprehensive simulation analys...A virtual thermal test system was built through the co-simulation using Simulink and Comsol to realize the complete virtualization of the thermal test.Using the co-simulation technology,comprehensive simulation analysis of the control system,electric field and thermal field was realized.The data state of each observation point could be directly observed at one time,including the output state information of the power amplifier,the output state information of the heater,and the thermal state information of the test unit.The virtual thermal test system has a predictive and guiding role for engineering thermal tests,and can realize thermal environment simulation beyond the existing thermal environment ground simulation capabilities,providing a basis for the development of future models.展开更多
Due to the dynamic stiffness characteristics of human joints, it is easy to cause impact and disturbance on normal movements during exoskeleton assistance. This not only brings strict requirements for exoskeleton cont...Due to the dynamic stiffness characteristics of human joints, it is easy to cause impact and disturbance on normal movements during exoskeleton assistance. This not only brings strict requirements for exoskeleton control design, but also makes it difficult to improve assistive level. The Variable Stiffness Actuator (VSA), as a physical variable stiffness mechanism, has the characteristics of dynamic stiffness adjustment and high stiffness control bandwidth, which is in line with the stiffness matching experiment. However, there are still few works exploring the assistive human stiffness matching experiment based on VSA. Therefore, this paper designs a hip exoskeleton based on VSA actuator and studies CPG human motion phase recognition algorithm. Firstly, this paper puts forward the requirements of variable stiffness experimental design and the output torque and variable stiffness dynamic response standards based on human lower limb motion parameters. Plate springs are used as elastic elements to establish the mechanical principle of variable stiffness, and a small variable stiffness actuator is designed based on the plate spring. Then the corresponding theoretical dynamic model is established and analyzed. Starting from the CPG phase recognition algorithm, this paper uses perturbation theory to expand the first-order CPG unit, obtains the phase convergence equation and verifies the phase convergence when using hip joint angle as the input signal with the same frequency, and then expands the second-order CPG unit under the premise of circular limit cycle and analyzes the frequency convergence criterion. Afterwards, this paper extracts the plate spring modal from Abaqus and generates the neutral file of the flexible body model to import into Adams, and conducts torque-stiffness one-way loading and reciprocating loading experiments on the variable stiffness mechanism. After that, Simulink is used to verify the validity of the criterion. Finally, based on the above criterions, the signal mean value is removed using feedback structure to complete the phase recognition algorithm for the human hip joint angle signal, and the convergence is verified using actual human walking data on flat ground.展开更多
The rising awareness of environmental issues and the increase of renewable energy sources(RESs)has led to a shift in energy production toward RES,such as photovoltaic(PV)systems,and toward a distributed generation(DG)...The rising awareness of environmental issues and the increase of renewable energy sources(RESs)has led to a shift in energy production toward RES,such as photovoltaic(PV)systems,and toward a distributed generation(DG)model of energy production that requires systems in which energy is generated,stored,and consumed locally.In this work,we present a methodology that integrates geographic information system(GIS)-based PV potential assessment procedures with models for the estimation of both energy generation and consumption profiles.In particular,we have created an innovative infrastructure that co-simulates PV integration on building rooftops together with an analysis of households’electricity demand.Our model relies on high spatiotemporal resolution and considers both shadowing effects and real-sky conditions for solar radiation estimation.It integrates methodologies to estimate energy demand with a high temporal resolution,accounting for realistic populations with realistic consumption profiles.Such a solution enables concrete recommendations to be drawn in order to promote an understanding of urban energy systems and the integration of RES in the context of future smart cities.The proposed methodology is tested and validated within the municipality of Turin,Italy.For the whole municipality,we estimate both the electricity absorbed from the residential sector(simulating a realistic population)and the electrical energy that could be produced by installing PV systems on buildings’rooftops(considering two different scenarios,with the former using only the rooftops of residential buildings and the latter using all available rooftops).The capabilities of the platform are explored through an in-depth analysis of the obtained results.Generated power and energy profiles are presented,emphasizing the flexibility of the resolution of the spatial and temporal results.Additional energy indicators are presented for the self-consumption of produced energy and the avoidance of CO_(2) emissions.展开更多
基金This work is supported by the NationalNatural Science Foundation of China(No.52075350)the Major Science and Technology Projects of Sichuan Province(No.2022ZDZX0001)the Special City-University Strategic Cooperation Project of Sichuan University and Zigong Municipality(No.2021CDZG-3).
文摘Regarding the spatial profile extraction method of a multi-field co-simulation dataset,different extraction directions,locations,and numbers of profileswill greatly affect the representativeness and integrity of data.In this study,a multi-field co-simulation data extractionmethod based on adaptive infinitesimal elements is proposed.Themultifield co-simulation dataset based on related infinitesimal elements is constructed,and the candidate directions of data profile extraction undergo dimension reduction by principal component analysis to determine the direction of data extraction.Based on the fireworks algorithm,the data profile with optimal representativeness is searched adaptively in different data extraction intervals to realize the adaptive calculation of data extraction micro-step length.The multi-field co-simulation data extraction process based on adaptive microelement is established and applied to the data extraction process of the multi-field co-simulation dataset of the sintering furnace.Compared with traditional data extraction methods for multi-field co-simulation,the approximate model constructed by the data extracted from the proposed method has higher construction efficiency.Meanwhile,the relative maximum absolute error,root mean square error,and coefficient of determination of the approximationmodel are better than those of the approximation model constructed by the data extracted from traditional methods,indicating higher accuracy,it is verified that the proposed method demonstrates sound adaptability and extraction efficiency.
基金The National Natural Science Foundation of China(No.50575040)the Natural Science Foundation of Jiangsu Province(No.BK2007112)
文摘A kind of construction truck model is built in Adams based on multi-body dynamic theory. The rigid and elastic wheels of tire-soil contact models are proposed based on the Bekker pressure model and the Jonasi shear soil model, and they are described in the form of S-function to enhance the calculation efficiency and simulation accuracy. Finally, the interaction of truck and soil is simulated by Adams-Maflab co-simulation to study the influence of soft terrain on the ride comfort of vehicles. The co-simulation results reveal that the terrain properties have a great influence on the ride comfort of vehicles as well as driving speed, road roughness and cargo weight. This co-simulation model is convenient for adding the factor of terrain deformation to the analysis of vehicle ride comfort. It can also be used to optimize suspension system parameters especially for off-road vehicles.
文摘In order to design an effective hydraulic motor speed control system, Matlab_Simiulink and AMESim co-simulation technology is adopted to establish more accurate model and reflect the actual system. The neural network proportion-integration-differentiation (PID) control parameters on-line adjustment is utilized to improve system accuracy, celerity and stability. Simulation results indicate that with the control system proposed in this paper, the system deviation is reduced, therefore accuracy is improved; response speed for step signal and sinusoidal signal gets faster, thus acceleration is rapidly improved; and the system can be restored to the control value in case of interfering, so stability is improved.
基金Project(2020EEEVL0403)supported by the China Earthquake AdministrationProjects(51878674,52022113)supported by the National Natural Science Foundation of ChinaProject(2022ZZTS0670)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Under high-level earthquakes,bridge piers and bearings are prone to be damaged and the elastoplastic state of bridge structural components is easily accessible in the train-track-bridge interaction(TTBI)system.Considering the complexity and structural non-linearity of the TTBI system under earthquakes,a single software is not adequate for the coupling analysis.Therefore,in this paper,an interactive method for the TTBI system is proposed by combining the multi-body dynamics software Simpack and the seismic simulation software OpenSees based on the Client-Server architecture,which takes full advantages of the powerful wheel-track contact analysis capabilities of Simpack and the sophisticated nonlinear analysis capabilities of OpenSees.Based on the proposed Simpack and OpenSees co-simulating train-track-bridge(SOTTB)method,a single-span bridge analysis under the earthquake was conducted and the accuracy of co-simulation method was verified by comparing it with results of the finite element model.Finally,the TTBI model is built utilizing the SOTTB method to further discuss the running safety of HST on multi-span simply supported bridges under earthquakes.The results show that the SOTTB method has the advantages of usability,high versatility and accuracy which can be further used to study the running safety of HST under earthquakes with high intensities.
文摘In order to observe the change and fluctuation in flow and pressure of a hydraulic quadruped robot's hydraulic system when the robot walks on trot gait,a co-simulation method based on ADAMS and AMESim is proposed. Firstly,the change rule in each swing angle of the hydraulic quadruped robot's four legs is analyzed and converted to the displacement change of the hydraulic cylinder by calculating their geometric relationship.Secondly,the robot's dynamic model is built in ADAMS and its hydraulic and control system models are built in AMESim. The displacement change of the hydraulic cylinder in the hydraulic system is used as the driving function of the dynamics model in ADAMS,and the driving force of the dynamics model is used as the loads of the hydraulic system in AMESim. By introducing the PID closed-loop control in the control system,the co-simulation between hydraulic system and mechanical system is implemented. Finally,the curve of hydraulic cylinders' loads,flow and pressure are analyzed and the results show that they fluctuate highly in accordance with the real situation. The study provides data support for the development of a hydraulic quadruped robot's physical prototype.
文摘To study the durability of a passenger car, this work investigates numerical simulation techniques. The investigations are based on an explicit implicit approach in which substructure techniques are used to reduce the simulation time, allowing full vehicle dynamic analyses to be performed on a timescale that is dif cult or impossible with the conventional nite element model (FEM). The model used here includes all necessary nonlinearities in order to maintain accuracy. All key components of the car structure are modeled with deformable materials. Tire road interactions are modeled in the explicit package with contact-impact interfaces with arbitrary frictional and geometric properties. Key parameters of the responses of the car driven on six different kinds of test road surfaces are examined and compared with experimental values. It can be concluded that the explicit implicit co-simulation techniques used here are ef cient and accurate enough for engineering purposes. This paper also discusses the limitations of the proposed method and outlines possible improvements for future work.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the process of evaluating the performance of an algorithm for a CPPS can be affected by the physical target characteristics and real communication conditions.To address this potential problem,a testbed with controller hardware-in-the-loop(CHIL)is proposed in this paper.On the basis of a power grid simulation conducted using the real-time simulator RT-LAB developed by the company OPAL-RT,along with a communication network simulation developed with OPNET,multiple distributed controllers were developed with hardware devices to directly collect the real-time operating data of the power system model in RT-LAB and provide local control.Furthermore,the communication between neighboring controllers was realized using the cyber system modelin OPNET with an Ethernet interface.The hardware controllers produced a real-world control behavior instead of a digital simulation,and precisely simulated the dynamic features of a CPPS with high speed.A classic cooperative control case for active power output was studied to explain the integrated simulation process and validate the effectiveness of the co-simulation testbed.
基金Supported by the National Natural Science Foundation of China(No.51575471)Collaborative Innovation Program Topics of Heavy Machinery of Yanshan University(2011 Program,No.ZX01-20140400-01)
文摘Based on the characteristics of integrated virtual prototype technology, the mechanical system sub-model, the hydraulic system sub-model and the control system sub-model of a forging manipula- tor system have been built using a variety of software, and a forging manipulator mtrltidisciplinary co- simulation model has been also built using a method of simulation models interface. Then the simu- lation and experiment are finished, and the result of the experiment is in good agreement with the re- sult of the simulation. It shows that the co-simulation model established can simulate accurately pa- rameter changes in real time during the moving of the forging manipulator such as displacement, ve- locity and pressure flow, which is of important significance for the optimized design of the forging manipulator system to establish the models.
基金supported by design of the ITER transfer casks system (ITER International Team) ITA 23-01-CNthe Key Laboratory of Biomimetic Sensing and Advanced Robot Technology,Anhui Province,China
文摘The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision characteristics, and the data transfer between the different models was accomplished by the integration interface between different software. Consequently the virtual experimental platform for the multi-disciplinary co-simulation was established. A co-simulation study of the mechanical-hydraulic-control coupling system of the ITER tractor was carried out. The synchronization servo control of parallel hydraulic cylinders was implemented, and the tracking control of the preconcerted trajectory of the hydraulic cylinders was realized on the established experimental platform. This paper presents the optimization design and technology rebuilding for the complicated coupling system with its theoretic foundation and co-simulation virtual experimental platform.
基金Supported by the National High Technology Research and Development Program of China("863"Program),(2011AAllA252)
文摘We reversely analyzed the energy management strategy (EMS) for a single-shaft parallel hybrid electric vehicle (HEV), and build a forward co-simulation platform based on Cruise and Matlab. The vehicle dynamics model is built with Cruise, and control model is set up with Matlab/Simulink environment. The data between the two models are transferred by the Matlab API interface in Cruise. After mechanical and signal connections are completed, we establish the computing tasks and take the simulations of vehicle' s power performance, economy, and emission performance. The simulation results match the actual measurement results, which show that the co-simulation platform is correct and feasible. The platform can be used not only for a basic simulation platform to optimize further EMS, but also for the development of actual control system.
文摘A hardware-software co-simulation method for system on chip (SOC) design is discussed. It is based on an instruction set simulator (ISS) and an event-driven hardware simulator, and a bus interface model that is described in C language provides the interface between the two. The bus interface model and the ISS are linked into a singleton program--the software simulator, which communicate with the hardware simulator through Windows sockets. The implementation of the bus interface model and the synchronization between hardware and software simulator are discussed in detail. Co-simulation control of the hardware simulator is also discussed.
基金Sponsored by the Independent Research Foundation of State Key Laboratory(ZDKT08-05)the Ministerial Level Research Foundation(06104040)
文摘Research on a servo tracking system mounted with a small arm for robot fighting platform based on multi-body system dynamics and intelligent control theory is presented.A multi-body dynamic model which can accurately express dynamic performances of the system is built in ADAMS.In addition,an intelligent PID control model is built with MATLAB/Simulink,and the two models are integrated and co-simulated by the interface of ADAMS/Controls.Simulation experiments indicate that co-simulation technique used for design of the servo tracking system mounted with a small arm can effectively improve its design efficiency,and can also provide theoretical bases for the motion control and performance improvement of the servo tracking system mounted with a small arm.
文摘In order to analyze the energy consumption of wheel loader during working process, a three-dimensional(3D) model of wheel loader is established by Pro/E software, and it is imported into the software SimulationX tobuild the kinetic model of the whole wheel loader. Meanwhile, the simulation model of hydraulic system is builtby the same software. By integrating the simulation model of hydraulic system with the kinetic model, the co-sim-ulation model of wheel loader could be achieved. The precision of co-simulation model of the working device isverified through the comparison between simulation results and test results. The testing results show that, undernegative loading condition, the energy loss in multi-way valve accounts for about 52%. The important energy lossin loader's working hydraulic system using constant displacement pump is the large throttling loss of multi-wayvalves. This study provides a reference for designing of a more energy-efficient hydaulic system of wheel loader.
基金National Natural Science Foundation of China(No.52101343)the Doubule First-rate Construction Special Funds(No.ZD1601)。
文摘Misalignment is one of the most common faults for the diesel engine.In order to eliminate the misalignment fault of the diesel engine in the process of operation,a targeting self-recovery regulation system is constructed by using a movable base and displacement sensors.Misalignment is monitored and detected in real time,the value of misalignment is calculated rapidly and accurately,andintelligent decision is made.Then,the base is moved reversely with a definite target to drive the shaft to translate or rotate,so that the shafts can be recovered to alignment online.A co-simulation model for the self-recovery system is established which consists of a dynamic model of the crankshaft system and control model.The self-recovery regulation process of misalignment is simulated.The simulation results show that the system can accurately calculate the misalignment values,with an error of less than 5%,and can automatically eliminate the misalignment fault of the diesel engine online.The research results provide theoretical support for the self-recovery regulation of misalignment fault,and due to the universality of structure and principle,the self-recovery system is not only suitable for diesel engine,but also for other rotating machineries.
文摘Based on multi-commercial finite element analysis (FEA) software co-simulation calculating method, the electromagnetic system model was built for solving static and dynamic characteristics of a clap-type rely. Using the Fortran programming language, the solving of differential equation and the calculating of electromagnetic torque interpolation was realized, therefore the MEM coupling system static/dynamic characteristics of the relay was obtained. The validity and accuracy of this method has been confirmed by results of experiments.The conclusions which obtained are valuable in optimizing the clap-type rely production.
文摘A virtual thermal test system was built through the co-simulation using Simulink and Comsol to realize the complete virtualization of the thermal test.Using the co-simulation technology,comprehensive simulation analysis of the control system,electric field and thermal field was realized.The data state of each observation point could be directly observed at one time,including the output state information of the power amplifier,the output state information of the heater,and the thermal state information of the test unit.The virtual thermal test system has a predictive and guiding role for engineering thermal tests,and can realize thermal environment simulation beyond the existing thermal environment ground simulation capabilities,providing a basis for the development of future models.
文摘Due to the dynamic stiffness characteristics of human joints, it is easy to cause impact and disturbance on normal movements during exoskeleton assistance. This not only brings strict requirements for exoskeleton control design, but also makes it difficult to improve assistive level. The Variable Stiffness Actuator (VSA), as a physical variable stiffness mechanism, has the characteristics of dynamic stiffness adjustment and high stiffness control bandwidth, which is in line with the stiffness matching experiment. However, there are still few works exploring the assistive human stiffness matching experiment based on VSA. Therefore, this paper designs a hip exoskeleton based on VSA actuator and studies CPG human motion phase recognition algorithm. Firstly, this paper puts forward the requirements of variable stiffness experimental design and the output torque and variable stiffness dynamic response standards based on human lower limb motion parameters. Plate springs are used as elastic elements to establish the mechanical principle of variable stiffness, and a small variable stiffness actuator is designed based on the plate spring. Then the corresponding theoretical dynamic model is established and analyzed. Starting from the CPG phase recognition algorithm, this paper uses perturbation theory to expand the first-order CPG unit, obtains the phase convergence equation and verifies the phase convergence when using hip joint angle as the input signal with the same frequency, and then expands the second-order CPG unit under the premise of circular limit cycle and analyzes the frequency convergence criterion. Afterwards, this paper extracts the plate spring modal from Abaqus and generates the neutral file of the flexible body model to import into Adams, and conducts torque-stiffness one-way loading and reciprocating loading experiments on the variable stiffness mechanism. After that, Simulink is used to verify the validity of the criterion. Finally, based on the above criterions, the signal mean value is removed using feedback structure to complete the phase recognition algorithm for the human hip joint angle signal, and the convergence is verified using actual human walking data on flat ground.
文摘The rising awareness of environmental issues and the increase of renewable energy sources(RESs)has led to a shift in energy production toward RES,such as photovoltaic(PV)systems,and toward a distributed generation(DG)model of energy production that requires systems in which energy is generated,stored,and consumed locally.In this work,we present a methodology that integrates geographic information system(GIS)-based PV potential assessment procedures with models for the estimation of both energy generation and consumption profiles.In particular,we have created an innovative infrastructure that co-simulates PV integration on building rooftops together with an analysis of households’electricity demand.Our model relies on high spatiotemporal resolution and considers both shadowing effects and real-sky conditions for solar radiation estimation.It integrates methodologies to estimate energy demand with a high temporal resolution,accounting for realistic populations with realistic consumption profiles.Such a solution enables concrete recommendations to be drawn in order to promote an understanding of urban energy systems and the integration of RES in the context of future smart cities.The proposed methodology is tested and validated within the municipality of Turin,Italy.For the whole municipality,we estimate both the electricity absorbed from the residential sector(simulating a realistic population)and the electrical energy that could be produced by installing PV systems on buildings’rooftops(considering two different scenarios,with the former using only the rooftops of residential buildings and the latter using all available rooftops).The capabilities of the platform are explored through an in-depth analysis of the obtained results.Generated power and energy profiles are presented,emphasizing the flexibility of the resolution of the spatial and temporal results.Additional energy indicators are presented for the self-consumption of produced energy and the avoidance of CO_(2) emissions.