针对传统模数转换器(analog to digital convertor,ADC)设计复杂度高、仿真迭代时间长的问题,提出了一种高精度ADC系统设计与建模方法。该方法以10 bit 50 MHz流水线ADC为例,首先选取分离采样架构,进行电路的s域变换理论分析;其次对电...针对传统模数转换器(analog to digital convertor,ADC)设计复杂度高、仿真迭代时间长的问题,提出了一种高精度ADC系统设计与建模方法。该方法以10 bit 50 MHz流水线ADC为例,首先选取分离采样架构,进行电路的s域变换理论分析;其次对电路中各种非理想噪声的表达式进行精确推导,根据系统中的运放功耗指标进行参数优化;最后分别在MATLAB和Cadence软件中建立模型,进行100点蒙特卡洛仿真。仿真结果表明,在TSMC 180 nm工艺失配下,该流水线ADC有效位数达到9.70 bit,无杂散动态范围维持在76 dB附近,微分非线性在0.3 LSB以内,积分非线性在0.5 LSB以内,核心功耗在8 mW,该分析方法在保证流水线ADC优异性能的同时,大幅提高了设计效率。展开更多
采用7级子ADC流水线结构设计了一个8位80 Msample/s的低功耗模数转换电路。为减小整个ADC的芯片面积和功耗,改善其谐波失真和噪声特性,重点考虑了第1级子ADC中MDAC的设计,将整个ADC的采样保持电路集成在第1级子ADC的MDAC中,并且采用逐...采用7级子ADC流水线结构设计了一个8位80 Msample/s的低功耗模数转换电路。为减小整个ADC的芯片面积和功耗,改善其谐波失真和噪声特性,重点考虑了第1级子ADC中MDAC的设计,将整个ADC的采样保持电路集成在第1级子ADC的MDAC中,并且采用逐级缩放技术设计7级子ADC的电路结构,在版图设计中考虑每一级子ADC中的电容及放大器的对称性。采用0.18μm CMOS工艺,该ADC的信噪比(SNR)为49.5 d B,有效位数(ENOB)为7.98位,该ADC的芯片面积只有0.56 mm2,典型的功耗电流仅为22 m A。整个ADC性能达到设计要求。展开更多
文摘针对传统模数转换器(analog to digital convertor,ADC)设计复杂度高、仿真迭代时间长的问题,提出了一种高精度ADC系统设计与建模方法。该方法以10 bit 50 MHz流水线ADC为例,首先选取分离采样架构,进行电路的s域变换理论分析;其次对电路中各种非理想噪声的表达式进行精确推导,根据系统中的运放功耗指标进行参数优化;最后分别在MATLAB和Cadence软件中建立模型,进行100点蒙特卡洛仿真。仿真结果表明,在TSMC 180 nm工艺失配下,该流水线ADC有效位数达到9.70 bit,无杂散动态范围维持在76 dB附近,微分非线性在0.3 LSB以内,积分非线性在0.5 LSB以内,核心功耗在8 mW,该分析方法在保证流水线ADC优异性能的同时,大幅提高了设计效率。
文摘采用7级子ADC流水线结构设计了一个8位80 Msample/s的低功耗模数转换电路。为减小整个ADC的芯片面积和功耗,改善其谐波失真和噪声特性,重点考虑了第1级子ADC中MDAC的设计,将整个ADC的采样保持电路集成在第1级子ADC的MDAC中,并且采用逐级缩放技术设计7级子ADC的电路结构,在版图设计中考虑每一级子ADC中的电容及放大器的对称性。采用0.18μm CMOS工艺,该ADC的信噪比(SNR)为49.5 d B,有效位数(ENOB)为7.98位,该ADC的芯片面积只有0.56 mm2,典型的功耗电流仅为22 m A。整个ADC性能达到设计要求。