网络直播广告作为一种新型营销方式快速发展,优化直播广告运营主体努力水平及定价策略是一项值得深入研究的课题。本文基于广告投放效果的两种定价模式,构建了包含两个广告商和一个主播的网络直播广告定价决策模型,探索广告商与主播的...网络直播广告作为一种新型营销方式快速发展,优化直播广告运营主体努力水平及定价策略是一项值得深入研究的课题。本文基于广告投放效果的两种定价模式,构建了包含两个广告商和一个主播的网络直播广告定价决策模型,探索广告商与主播的最优努力水平选择及广告定价策略。研究发现:CPW(cost per watch)定价模式下,广告商承担了消费者是否购买的不确定性风险,当消费者敏感性系数偏低时,广告商会提交较低的出价,且B/D两类广告商赢得竞拍的概率相等;对比CPW模式,在CPA(cost per action)定价模式下广告商的努力水平更低,且CPA定价模式中B型(品牌型)广告商赢得竞拍的概率更大,但赢得竞拍的广告商边际利润往往较低;与广告商相反,主播在CPA定价模式下的收益大于CPW,且随消费者敏感性系数的增加,两种定价模式下的收益差逐渐增大;CPW定价模式下预期观看直播的用户量和购买率均高于CPA,网络直播市场倾向于从CPW广告定价合同中获得较大收益。展开更多
大数据时代,流数据大量涌现.概念漂移作为流数据挖掘中最典型且困难的问题,受到了越来越广泛的关注.集成学习是处理流数据中概念漂移的常用方法,然而在漂移发生后,学习模型往往无法对流数据的分布变化做出及时响应,且不能有效处理不同...大数据时代,流数据大量涌现.概念漂移作为流数据挖掘中最典型且困难的问题,受到了越来越广泛的关注.集成学习是处理流数据中概念漂移的常用方法,然而在漂移发生后,学习模型往往无法对流数据的分布变化做出及时响应,且不能有效处理不同类型概念漂移,导致模型泛化性能下降.针对这个问题,提出一种面向不同类型概念漂移的两阶段自适应集成学习方法(two-stage adaptive ensemble learning method for different types of concept drift,TAEL).该方法首先通过检测漂移跨度来判断概念漂移类型,然后根据不同漂移类型,提出“过滤-扩充”两阶段样本处理机制动态选择合适的样本处理策略.具体地,在过滤阶段,针对不同漂移类型,创建不同的非关键样本过滤器,提取历史样本块中的关键样本,使历史数据分布更接近最新数据分布,提高基学习器有效性;在扩充阶段,提出一种分块优先抽样方法,针对不同漂移类型设置合适的抽取规模,并根据历史关键样本所属类别在当前样本块上的规模占比设置抽样优先级,再由抽样优先级确定抽样概率,依据抽样概率从历史关键样本块中抽取关键样本子集扩充当前样本块,缓解样本扩充后的类别不平衡现象,解决当前基学习器欠拟合问题的同时增强其稳定性.实验结果表明,所提方法能够对不同类型的概念漂移做出及时响应,加快漂移发生后在线集成模型的收敛速度,提高模型的整体泛化性能.展开更多
目的探讨呼吸困难指数气流受限程度指数(dyspnea index air flow restriction degree,ADO)在慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)患者近期预后评估中的价值。方法选取新疆医科大学第二附属医院呼吸内科自2021...目的探讨呼吸困难指数气流受限程度指数(dyspnea index air flow restriction degree,ADO)在慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)患者近期预后评估中的价值。方法选取新疆医科大学第二附属医院呼吸内科自2021年3月—2023年3月的COPD患者120例,并依照患者最终转归情况将其分为存活组(n=95)与死亡组(n=25)。观察2组患者的基础病情况及患者性别、年龄、第1秒用力呼气容积(first second forced expiratory volume,FEV1)占预计值的百分比和ADO指数等相关指标。比较ADO指数不同分数患者病死率。比较ADO指数预测180 d死亡的受试者工作特征(receiver operating characteristic,ROC)曲线面积。结果2组患者的高血压、冠心病、心律失常、糖尿病、慢性肝病、慢性肾病、亚临床甲减发生情况对比,差异无统计学意义(P>0.05)。死亡组患者的FEV1占预计值的百分比、FEV1占预计值的百分比评分、呼吸困难分[英国医学研究委员会(the Medical Research Council,MRC)]评分以及ADO指数均高于存活组患者(P<0.05)。ADO指数<5分者的死亡率高于ADO指数≥5分者(P<0.05)。ADO指数预测180 d死亡的ROC曲线面积为0.851(95%CI:0.767~0.928,P<0.001),ADO指数为5.5时,约登指数最大,为0.565。结论ADO可有效反映COPD病情严重程度,对于患者而言可准确反映其病情进展情况,帮助其获得良好的疾病治疗效果,对于患者近期预后而言也具有积极意义,临床应用效果良好。展开更多
戏剧翻译缺乏系统性、层次性、逻辑性、操作性与全面性,亟须再次厘定明晰具体可行的翻译标准。基于此,以英国经典戏剧Much Ado About Nothing译本为例,针对戏剧译本进入目的语文化中受众域的多样性,辨析文本读者、舞台演员、表演观众、...戏剧翻译缺乏系统性、层次性、逻辑性、操作性与全面性,亟须再次厘定明晰具体可行的翻译标准。基于此,以英国经典戏剧Much Ado About Nothing译本为例,针对戏剧译本进入目的语文化中受众域的多样性,辨析文本读者、舞台演员、表演观众、幕后人员对戏剧译本的语用期待,将可表演性原则细化为文学鉴赏性、表演呈现性、通俗简要性和舞台操作性四个标准。戏剧译介标准探析有助于经典戏剧在全球进行跨文化传播,可以为各国人民还原戏剧艺术的本真价值,也可以为戏剧翻译实践者提供借鉴与思考。展开更多
数据流分类是数据流挖掘领域一项重要研究任务,目标是从不断变化的海量数据中捕获变化的类结构.目前,几乎没有框架可以同时处理数据流中常见的多类非平衡、概念漂移、异常点和标记样本成本高昂问题.基于此,提出一种非平衡数据流在线主...数据流分类是数据流挖掘领域一项重要研究任务,目标是从不断变化的海量数据中捕获变化的类结构.目前,几乎没有框架可以同时处理数据流中常见的多类非平衡、概念漂移、异常点和标记样本成本高昂问题.基于此,提出一种非平衡数据流在线主动学习方法(Online active learning method for imbalanced data stream,OALM-IDS).AdaBoost是一种将多个弱分类器经过迭代生成强分类器的集成分类方法,AdaBoost.M2引入了弱分类器的置信度,此类方法常用于静态数据.定义了基于非平衡比率和自适应遗忘因子的训练样本重要性度量,从而使AdaBoost.M2方法适用于非平衡数据流,提升了非平衡数据流集成分类器的性能.提出了边际阈值矩阵的自适应调整方法,优化了标签请求策略.将概念漂移程度融入模型构建过程中,定义了基于概念漂移指数的自适应遗忘因子,实现了漂移后的模型重构.在6个人工数据流和4个真实数据流上的对比实验表明,提出的非平衡数据流在线主动学习方法的分类性能优于其他5种非平衡数据流学习方法.展开更多
文摘网络直播广告作为一种新型营销方式快速发展,优化直播广告运营主体努力水平及定价策略是一项值得深入研究的课题。本文基于广告投放效果的两种定价模式,构建了包含两个广告商和一个主播的网络直播广告定价决策模型,探索广告商与主播的最优努力水平选择及广告定价策略。研究发现:CPW(cost per watch)定价模式下,广告商承担了消费者是否购买的不确定性风险,当消费者敏感性系数偏低时,广告商会提交较低的出价,且B/D两类广告商赢得竞拍的概率相等;对比CPW模式,在CPA(cost per action)定价模式下广告商的努力水平更低,且CPA定价模式中B型(品牌型)广告商赢得竞拍的概率更大,但赢得竞拍的广告商边际利润往往较低;与广告商相反,主播在CPA定价模式下的收益大于CPW,且随消费者敏感性系数的增加,两种定价模式下的收益差逐渐增大;CPW定价模式下预期观看直播的用户量和购买率均高于CPA,网络直播市场倾向于从CPW广告定价合同中获得较大收益。
文摘大数据时代,流数据大量涌现.概念漂移作为流数据挖掘中最典型且困难的问题,受到了越来越广泛的关注.集成学习是处理流数据中概念漂移的常用方法,然而在漂移发生后,学习模型往往无法对流数据的分布变化做出及时响应,且不能有效处理不同类型概念漂移,导致模型泛化性能下降.针对这个问题,提出一种面向不同类型概念漂移的两阶段自适应集成学习方法(two-stage adaptive ensemble learning method for different types of concept drift,TAEL).该方法首先通过检测漂移跨度来判断概念漂移类型,然后根据不同漂移类型,提出“过滤-扩充”两阶段样本处理机制动态选择合适的样本处理策略.具体地,在过滤阶段,针对不同漂移类型,创建不同的非关键样本过滤器,提取历史样本块中的关键样本,使历史数据分布更接近最新数据分布,提高基学习器有效性;在扩充阶段,提出一种分块优先抽样方法,针对不同漂移类型设置合适的抽取规模,并根据历史关键样本所属类别在当前样本块上的规模占比设置抽样优先级,再由抽样优先级确定抽样概率,依据抽样概率从历史关键样本块中抽取关键样本子集扩充当前样本块,缓解样本扩充后的类别不平衡现象,解决当前基学习器欠拟合问题的同时增强其稳定性.实验结果表明,所提方法能够对不同类型的概念漂移做出及时响应,加快漂移发生后在线集成模型的收敛速度,提高模型的整体泛化性能.
文摘目的探讨呼吸困难指数气流受限程度指数(dyspnea index air flow restriction degree,ADO)在慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)患者近期预后评估中的价值。方法选取新疆医科大学第二附属医院呼吸内科自2021年3月—2023年3月的COPD患者120例,并依照患者最终转归情况将其分为存活组(n=95)与死亡组(n=25)。观察2组患者的基础病情况及患者性别、年龄、第1秒用力呼气容积(first second forced expiratory volume,FEV1)占预计值的百分比和ADO指数等相关指标。比较ADO指数不同分数患者病死率。比较ADO指数预测180 d死亡的受试者工作特征(receiver operating characteristic,ROC)曲线面积。结果2组患者的高血压、冠心病、心律失常、糖尿病、慢性肝病、慢性肾病、亚临床甲减发生情况对比,差异无统计学意义(P>0.05)。死亡组患者的FEV1占预计值的百分比、FEV1占预计值的百分比评分、呼吸困难分[英国医学研究委员会(the Medical Research Council,MRC)]评分以及ADO指数均高于存活组患者(P<0.05)。ADO指数<5分者的死亡率高于ADO指数≥5分者(P<0.05)。ADO指数预测180 d死亡的ROC曲线面积为0.851(95%CI:0.767~0.928,P<0.001),ADO指数为5.5时,约登指数最大,为0.565。结论ADO可有效反映COPD病情严重程度,对于患者而言可准确反映其病情进展情况,帮助其获得良好的疾病治疗效果,对于患者近期预后而言也具有积极意义,临床应用效果良好。
文摘戏剧翻译缺乏系统性、层次性、逻辑性、操作性与全面性,亟须再次厘定明晰具体可行的翻译标准。基于此,以英国经典戏剧Much Ado About Nothing译本为例,针对戏剧译本进入目的语文化中受众域的多样性,辨析文本读者、舞台演员、表演观众、幕后人员对戏剧译本的语用期待,将可表演性原则细化为文学鉴赏性、表演呈现性、通俗简要性和舞台操作性四个标准。戏剧译介标准探析有助于经典戏剧在全球进行跨文化传播,可以为各国人民还原戏剧艺术的本真价值,也可以为戏剧翻译实践者提供借鉴与思考。
文摘数据流分类是数据流挖掘领域一项重要研究任务,目标是从不断变化的海量数据中捕获变化的类结构.目前,几乎没有框架可以同时处理数据流中常见的多类非平衡、概念漂移、异常点和标记样本成本高昂问题.基于此,提出一种非平衡数据流在线主动学习方法(Online active learning method for imbalanced data stream,OALM-IDS).AdaBoost是一种将多个弱分类器经过迭代生成强分类器的集成分类方法,AdaBoost.M2引入了弱分类器的置信度,此类方法常用于静态数据.定义了基于非平衡比率和自适应遗忘因子的训练样本重要性度量,从而使AdaBoost.M2方法适用于非平衡数据流,提升了非平衡数据流集成分类器的性能.提出了边际阈值矩阵的自适应调整方法,优化了标签请求策略.将概念漂移程度融入模型构建过程中,定义了基于概念漂移指数的自适应遗忘因子,实现了漂移后的模型重构.在6个人工数据流和4个真实数据流上的对比实验表明,提出的非平衡数据流在线主动学习方法的分类性能优于其他5种非平衡数据流学习方法.